Polarization effects in knock-out reactions

- A. García-Camacho
 - Reactions
 - Polarization
 - Reaction model and interactions
 - Analysing powers
 - γ -ray angular distributions

Knockout reactions

What we mean by polarization

thus instead of

$$\sigma = \frac{1}{2j_1 + 1} \sum_{m_1} \dots$$
 (1)

each of the terms will be considered.

Analysing powers in knockout reactions

$$\frac{\sigma_m}{\sigma} = (1 + \sum_{kq} t_{kq}^m T_{kq})$$

They can be related to the probability amplitude

$$R_{n_1 n_1'} = \int \sum A_{n_1} A_{n_1'}^* \tag{2}$$

and since

$$N_{kq} = \sum_{n_1, n_1'} \hat{k}(j_1 \ n_1 \ k \ q|j_1 \ n_1') R_{n_1 n_1'}$$

and T_{kq} is just $T_{kq} = N_{kq}/N_{00}$. For a spin-1 particles beam

$$\frac{\sigma_{\pm 1}}{\sigma} = (1 + \frac{T_{20}}{\sqrt{2}}) ; \frac{\sigma_0}{\sigma} = (1 - \sqrt{2} T_{20})$$

What we mean by polarization (II)

different populations of ϵ_c give rise to different γ -ray angular distributions.

Question

How sensitive are these calculations to

• reaction models?

• two-body interactions?

Amplitude in TC (A. Bonaccorso and D. M. Brink, Phys. Rev. C38 (1988), 1776)

$$\frac{d\sigma}{dk_{1}} = \frac{\hat{j}_{1}^{3}}{\hat{l}_{1}} (16\pi)^{2} \frac{\hbar}{mvk_{f}} W(l_{1}, j_{1}, l_{1}, j_{1}, s, 0)(-1)^{j_{1}+l_{1}-s} \\
\times \sum_{l_{2}} \frac{1-|S_{l_{2}}|^{2}+|1-S_{l_{2}}|^{2}}{4} \sum_{m_{1}} |Y_{l_{1}m_{1}}(\beta_{1}, \pi)|^{2} \sum_{m_{2}} |Y_{l_{2}m_{2}}(\beta_{2}, 0)|^{2} \\
\times \int |S_{ct}(b)|^{2} |K_{m_{1}-m_{2}}(\eta b)|^{2} b db$$
(3)

- $\beta_{1,2}$ and η depend on binding energies, beam velocity and masses,
- neutron-target spin-orbit force has been neglected,
- the Bessel function K is usually approximated in literature.

Two-body interactions: n-T

- JLM optical potential (Jeukenne, J.P. and Lejeune, A. and Mahaux, C., Phys. Rev. **C16** (1977), 80)
 - Reid's hard core n-n interaction in infinite nuclear matter
 - Folding by making a local density approximation
- BB parametrisation (A. Bonaccorso and G. Bertsch, Phys. Rev. C63 (2001),044604)

Two-body interactions: n-T

⁹Be(n,n)⁹Be

Two-body interactions: c-T

- Optical limit of Glauber Theory for $|S_{ct}(b)|^2$
- Parametrisation $|S_{ct}(b)|^2 = \exp(-\log 2 \exp(-(R_s b)/a))$ with $R_s = 1.4(A_p^{1/3} + A_t^{1/3})$

Two-body interactions: c-T

Our results for T_{20}

We have calculated some numbers for stripping of ${}^{17}C$ at 60 MeV/A, where an eikonal model calculation gives $T_{20} = 0.23$

(R.C. Johnson and J.A. Tostevin, *Analysing power of neutron removal reactions with beams of neutron-rich nuclei*, in: 'Spins in Nuclear and Hadronic Reactions', Proceedings of the RCNP-TMU Symposium (Tokyo, Japan 26 - 28 October 1999), (ed H Yabu, T Suzuki and H Toki, World Scientific (Singapore), October 2000), 155-164)

Approx.	T_{20}
Oth order	-0.24
1st order	0.10
2nd order	0.24
3rd order	0.28
Bessel function	0.32

Contribution of different orientations

13

Insensitivity

Insensitivity

Values of T_{20}^i for ¹⁷C for the two values of R_s under examination.

	T^i_{20}	
Approximation	$R_s = 5.95 \mathrm{fm}$	R_s = 6.51 fm
0th order	-0.37	-0.35
1st	0.03	0.01
2st	0.21	0.22
3st	0.26	0.27
Exact	0.36	0.32

γ -ray angular distribution

$$\begin{split} P^{q}(\mathbf{k}) &= \frac{k}{2\pi\hbar} \sum_{K} \sum_{L-L'} \sum_{\pi-\pi'} B_{K}(J_{1}) P_{K}(\cos\theta) (-1)^{q+J_{1}-J_{2}+L'-L-K} \widehat{J}_{1} \\ (L \ q \ L' \ -q|K \ 0) W(J_{1}, J_{1}, L, L'; K, J_{2}) \ q^{\pi+\pi'} < J_{1} ||T_{L}^{\pi}||J_{2} > < J_{1} ||T_{L'}^{\pi'}||J_{2} >^{*} \end{split}$$
 where

$$B_K(J_1) = \sum_{M_1} w(M_1) \widehat{K}(J_1 \ M_1 \ K \ 0|J_1 \ M_1).$$

(H. J. Rose and D. M. Brink, Rev. Mod. Phys. 39 (1967),306)

Core substate populations

Populating a $d_{\rm 5/2}$ state in $^{\rm 33}{\rm Si}$

Populations and anisotropy

- 0.1 fm $^{-1}$ - 0.6 fm $^{-1}$

1

0.5

 γ -ray angular distribution from the ³³Si (5/2⁺, $E_x = 4.32$ MeV) state considering a) E2 and b) M1 transitions. θ_{cm} is the angle of the emitted radiation in the rest frame of the residue. The momentum acceptance Δ is given in fm⁻¹ around $k_1 = 0$, $-\Delta \leq k_1 \leq \Delta$. The intensities have been scaled to be 1 at zero angle.

Conclusions

- Analysing powers test the reaction mechanism without requiring too much precision in the interactions, and
- can be used as spectroscopic tools
- γ -ray angular distributions can be calculated