Polarization effects in knock-out reactions

A. García-Camacho

- Reactions
- Polarization
- Reaction model and interactions
- Analysing powers
- γ-ray angular distributions

Knockout reactions

What we mean by polarization

thus instead of

$$
\begin{equation*}
\sigma=\frac{1}{2 j_{1}+1} \sum_{m_{1}} \ldots \tag{1}
\end{equation*}
$$

each of the terms will be considered.

Analysing powers in knockout reactions

$$
\frac{\sigma_{m}}{\sigma}=\left(1+\sum_{k q} t_{k q}^{m} T_{k q}\right)
$$

They can be related to the probability amplitude

$$
\begin{equation*}
R_{n_{1} n_{1}^{\prime}}=\int \sum A_{n_{1}} A_{n_{1}^{\prime}}^{*} \tag{2}
\end{equation*}
$$

and since

$$
N_{k q}=\sum_{n_{1}, n_{1}^{\prime}} \widehat{k}\left(j_{1} n_{1} k q \mid j_{1} n_{1}^{\prime}\right) R_{n_{1} n_{1}^{\prime}}
$$

and $T_{k q}$ is just $T_{k q}=N_{k q} / N_{00}$.
For a spin-1 particles beam

$$
\frac{\sigma_{ \pm 1}}{\sigma}=\left(1+\frac{T_{20}}{\sqrt{2}}\right) ; \frac{\sigma_{0}}{\sigma}=\left(1-\sqrt{2} T_{20}\right)
$$

What we mean by polarization (II)

different populations of ϵ_{c} give rise to different γ-ray angular distributions.

Question

How sensitive are these calculations to

- reaction models?
- two-body interactions?

Amplitude in TC (A. Bonaccorso and D. M. Brink, Phys. Rev. C38

 (1988), 1776)$$
\begin{align*}
\frac{d \sigma}{d k_{1}} & =\frac{\hat{j}_{1}^{3}}{\widehat{l}_{1}}(16 \pi)^{2} \frac{\hbar}{m v k_{f}} W\left(l_{1}, j_{1}, l_{1}, j_{1}, s, 0\right)(-1)^{j_{1}+l_{1}-s} \\
& \times \sum_{l_{2}} \frac{1-\left|S_{l_{2}}\right|^{2}+\left|1-S_{l_{2}}\right|^{2}}{4} \sum_{m_{1}}\left|Y_{l_{1} m_{1}}\left(\beta_{1}, \pi\right)\right|^{2} \sum_{m_{2}}\left|Y_{l_{2} m_{2}}\left(\beta_{2}, 0\right)\right|^{2} \\
& \times \int^{2}\left|S_{c t}(b)\right|^{2}\left|K_{m_{1}-m_{2}}(\eta b)\right|^{2} b d b \tag{3}
\end{align*}
$$

- $\beta_{1,2}$ and η depend on binding energies, beam velocity and masses,
- neutron-target spin-orbit force has been neglected,
- the Bessel function K is usually approximated in literature.

Two-body interactions: n-T

- JLM optical potential (Jeukenne, J.P. and Lejeune, A. and Mahaux, C., Phys. Rev. C16 (1977), 80)
- Reid's hard core n-n interaction in infinite nuclear matter
- Folding by making a local density approximation
- BB parametrisation (A. Bonaccorso and G. Bertsch, Phys. Rev. C63 (2001),044604)

Two-body interactions: n-T

Two-body interactions: c-T

- Optical limit of Glauber Theory for $\left|S_{c t}(b)\right|^{2}$
- Parametrisation $\left|S_{c t}(b)\right|^{2}=\exp \left(-\log 2 \exp \left(-\left(R_{s}-b\right) / a\right)\right)$ with $R_{s}=$ $1.4\left(A_{p}^{1 / 3}+A_{t}^{1 / 3}\right)$

Two-body interactions: c-T

Our results for T_{20}

We have calculated some numbers for stripping of ${ }^{17} \mathrm{C}$ at $60 \mathrm{MeV} / \mathrm{A}$, where an eikonal model calculation gives $T_{20}=0.23$
(R.C. Johnson and J.A. Tostevin, Analysing power of neutron removal reactions with beams of neutron-rich nuclei, in: 'Spins in Nuclear and Hadronic Reactions', Proceedings of the RCNP-TMU Symposium (Tokyo, Japan 26-28 October 1999), (ed H Yabu, T Suzuki and H Toki, World Scientific (Singapore), October 2000), 155-164)

Approx.	T_{20}
Oth order	-0.24
1st order	0.10
2nd order	0.24
3rd order	0.28
Bessel function	0.32

Contribution of different orientations

Insensitivity

(${ }^{34}$ Si case)

Insensitivity

Values of T_{20}^{i} for ${ }^{17} \mathrm{C}$ for the two values of R_{s} under examination.

	T_{20}^{i}	
Approximation	$R_{s}=5.95 \mathrm{fm}$	$R_{s}=6.51 \mathrm{fm}$
Oth order	-0.37	-0.35
1st	0.03	0.01
2st	0.21	0.22
3st	0.26	0.27
Exact	0.36	0.32

γ-ray angular distribution

$$
\begin{aligned}
& P^{q}(\mathbf{k})=\frac{k}{2 \pi \hbar} \sum_{K} \sum_{L} \sum_{L^{\prime} \pi \pi^{\prime}} B_{K}\left(J_{1}\right) P_{K}(\cos \theta)(-1)^{q+J_{1}-J_{2}+L^{\prime}-L-K} \widehat{J}_{1} \\
& \left(L q L^{\prime}-q \mid K 0\right) W\left(J_{1}, J_{1}, L, L^{\prime} ; K, J_{2}\right) q^{\pi+\pi^{\prime}}<J_{1}\left\|T_{L}^{\pi}\right\| J_{2}><J_{1}\left\|T_{L^{\prime}}^{\pi^{\prime}}\right\| J_{2}>^{*}
\end{aligned}
$$

where

$$
B_{K}\left(J_{1}\right)=\sum_{M_{1}} w\left(M_{1}\right) \widehat{K}\left(J_{1} M_{1} K \text { O| } J_{1} M_{1}\right)
$$

(H. J. Rose and D. M. Brink, Rev. Mod. Phys. 39 (1967),306)

Core substate populations

Populating a $d_{5 / 2}$ state in ${ }^{33} \mathrm{Si}$

Populations and anisotropy

γ-ray angular distribution from the ${ }^{33} \mathrm{Si}\left(5 / 2^{+}, E_{x}=4.32 \mathrm{MeV}\right)$ state considering a) E2 and b) M1 transitions. $\theta_{c m}$ is the angle of the emitted radiation in the rest frame of the residue. The momentum acceptance Δ is given in fm^{-1} around $k_{1}=0,-\Delta \leq k_{1} \leq \Delta$. The intensities have been scaled to be 1 at zero angle.

Conclusions

- Analysing powers test the reaction mechanism without requiring too much precision in the interactions, and
- can be used as spectroscopic tools
- γ-ray angular distributions can be calculated

