

Experimental results on (sd)³ structures of ¹⁶C and ¹⁷C

Three-neutron $(sd)^3 \otimes core$ configurations

H.G. Bohlen¹, R. Kalpakchieva², W. von Oertzen¹, T.N. Massey³, A.A. Ogloblin⁴ G. de Angelis⁵, M. Milin⁶, Ch. Schulz¹, Tz. Kokalova¹ and C. Wheldon¹

- ¹ Hahn-Meitner-Institut, Berlin, Germany
- ² FLNR, JINR, Dubna, Russia
- ³ Ohio University, Athens, USA
- ⁴ IGNP, Kurchatov Institute, Moscow, Russia
- ⁵ LNL, INFN, Legnaro, Italy
- ⁶ Rudjer Boskovic Institute, Zagreb, Croatia

Ground state properties and first excited states of ¹⁶C and ¹⁷C

¹⁶C: States of ¹⁶C known up to 6.11 MeV excitation energy from the ¹⁴C(t,p) reaction [Balamuth77, Fortune77, Sercely78]. Well described by shell model (SM) calculations. States up to 17.4 MeV observed in the ¹³C(¹²C,⁹C) reaction [Boh03].

Ground state properties were investigated by one-neutron removal reactions using a 16 C radioactive beam [many refs., see, e.g., Maddalena01]. Result: 58(6) % (1d5/2)² and 42(6) % (2s1/2)² in good agreement with SM calculs.

B(E2) value of the first 2⁺ state at 1.77 MeV is extremely small [Imai04, Elekes04].

Ground state properties and first excited states of ¹⁶C and ¹⁷C

¹⁶C: States of ¹⁶C known up to 6.11 MeV excitation energy from the ¹⁴C(t,p) reaction [Balamuth77, Fortune77, Sercely78]. Well described by shell model (SM) calculations. States up to 17.4 MeV observed in the ¹³C(¹²C,⁹C) reaction [Boh03].

Ground state properties were investigated by one-neutron removal reactions using a 16 C radioactive beam [many refs., see, e.g., Maddalena01]. Result: 58(6) % (1d5/2)² and 42(6) % (2s1/2)² in good agreement with SM calculs.

B(E2) value of the first 2⁺ state at 1.77 MeV is extremely small [Imai04, Elekes04].

¹⁷C: Only two states of ¹⁷C observed in the ⁴⁸Ca(¹⁸O,¹⁷C)⁴⁹Ti reaction [Nolen77, Fifield82], the ground state and an excited state at 0.295(10) MeV (probably 5/2⁺).
Puzzle: the spin-parity of the ¹⁷C ground state: ?? 1/2⁺, 3/2⁺, 5/2⁺ ?? Solution: → 3/2⁺ !!
a) β-decay of ¹⁷C to exc. states of ¹⁷N and γ-decay branching ratios: 5/2⁺ excluded [Warburton, Millener89].
b) g-factor measurement [Ogawa02]: 1/2⁺ excluded
c) ¹⁷C-beam, 1n-removal cross sections confirm 3/2⁺ [Maddal.01, Sauvan04, Datta03]

Recently γ -transitions were reported at 0.21 MeV and 0.33 MeV [Stanoiu04]

Low-lying states of ¹⁶C and ¹⁷C:

İI III İ

¹⁶C: ¹⁴C(gs)⊗v(sd)²

Schematic $(sd)^2$:

Low-lying states of ¹⁶C and ¹⁷C:

¹⁶C: ${}^{14}C(gs) \otimes_V (sd)^2$

and ¹⁷C, ¹⁶C: ^{14,13}C(gs) $\otimes v(sd)^3$, respectively.

ISL at HMI Berlin

** * * * * *

Reaction conditions and selectivity

The ¹²C(¹²C,⁹C)¹⁵C - reaction at 231 MeV

- Breit-Wigner resonances (S_n=1.22 MeV)
- Three-body distributions ${}^{9}C + n + {}^{14}C^{*}$ sequential decay: ${}^{10}C^{*}(22.2 \text{MeV})$ (3⁻⁻, 6.73MeV)

Reaction conditions and selectivity

The ¹²C(¹²C,⁹C)¹⁵C - reaction at 231 MeV

- Breit-Wigner resonances (S_n=1.22 MeV)
- Three-body distributions ${}^{9}C + n + {}^{14}C^{*}$ sequential decay: ${}^{10}C^{*}(22.2 \text{MeV})$ (3⁻⁻, 6.73MeV)
- Cross sections are strongly dependent on dynamical matching conditions:

large negative Q-values → extreme mismatch of grazing angular momenta: $L_{gr,i} - L_{gr,f} \ge 9$! → stretched configurations are strongly favored e.g. $9/2^-$: $[(1d5/2)^2_{4+} x(1p1/2)^{-1}]9/2^-$ yes (↑↑) $7/2^-$: $[(1d5/2)^2_{4+} x(1p1/2)^{-1}]7/2^-$ no (↑↓)

Spectroscopy of ¹⁶C using the three-neutron transfer (¹²C,⁹C)

** * * * * *

¹⁵C

(¹²C-target, two holes in the 1p-shell) energy resolution: 0.20 - 0.25 MeV

¹⁶C:

(¹³C-target, core with 1p1/2-hole built-in)

14 new states observed [Boh03] states known from (t,p) [e.g., Fortune78]

<u>Spectroscopy of ¹⁶C using the</u> three-neutron transfer (¹²C,⁹C)

111111

¹⁵C

(¹²C-target, two holes in the 1p-shell) energy resolution: 0.20 - 0.25 MeV

¹⁶C:

(¹³C-target, core with 1p1/2-hole built-in)

14 new states observed [Boh03] known states

stretched configurations are *strong:* 4⁺ [(1d5/2)²] 5⁻ [(1d5/2)³,9/2⁺ x (1/2⁻)⁻¹]

5⁻,4⁻ doublet: $9/2^{+}$ $\uparrow \uparrow$ $1/2^{-}$, $9/2^{+}$ $\uparrow \downarrow$ $1/2^{-}$ **3**⁻,2⁻ doublet: $5/2^{+}$ $\uparrow \uparrow$ $1/2^{-}$, $5/2^{+}$ $\uparrow \downarrow$ $1/2^{-}$

Spectroscopy of ¹⁷C

¹⁴C-target, background subtracted $S_n = 0.73 \text{ MeV}, \quad Q_0 = -46.93 \text{ MeV}$ **13 new states identified above** S_n strongest state: stretched config. $(1d5/2)^3 \rightarrow 9/2^+$ Starting with: ${}^{14}C_{gs}$ target (closed neutron 1p-shell) direct 3n-transfer to the open sd-shell \Rightarrow population of (sd)³ structures expected (3p-0h)

Spectroscopy of ¹⁷C

13 new states identified above S_n strongest state: stretched config. $(1d5/2)^3 \rightarrow 9/2^+$ $^{14}C_{gs}$ target (closed neutron 1p-shell) Starting with: direct 3n-transfer to the open sd-shell population of (sd)³ structures expected (3p-0h)

Comparison of ¹⁷C - ¹⁶C spectra

Spectra aligned for the states with $(1d5/2)^3$,9/2⁺ configurations, in ¹⁶C at 8.92 MeV and in ¹⁷C at 3.10 MeV. (offset 5.82 MeV, same scale factor)

Spectroscopy of ¹⁷C

 $S_n = 0.73 \text{ MeV}, \quad Q_0 = -46.93 \text{ MeV}$ 13 new states identified above S_n strongest state: stretched config. $(1d5/2)^3 \rightarrow 9/2^+$ $^{14}C_{gs}$ target (closed neutron 1p-shell) Starting with: direct 3n-transfer to the open sd-shell population of (sd)³ structures expected (3p-0h)

Comparison of ¹⁷C - ¹⁶C spectra

Spectra aligned for the states with (1d5/2)³,9/2⁺ configurations, in ¹⁶C at 8.92 MeV and in ¹⁷C at 3.10 MeV. (offset 5.82 MeV, same scale factor)

Red lines are almost parallel ! connect states of corresponding structure \Rightarrow pairs of corresponding states

State No.	2	3	4	5	6	7	8	9	10	11	
E _x (¹⁷ C) [MeV]	0.31	2.06	3.10	4.25	6.20	6.75	7.47	8.94	10.56	11.71	

HITTI

State No.	2	3	4	5	6	7	8	9	10	11	
E _x (¹⁷ C) [MeV]	0.31	2.06	3.10	4.25	6.20	6.75	7.47	8.94	10.56	11.71	
E _x (¹⁶ C) [MeV]	6.11ª	7.74	8.92	9.98	11.85	12.54	13.12	14.90	16.44	17.4	
E _x (¹⁶ C) - 5.82	0.29	1.92	3.10	4.16	6.03	6.72	7.30	9.08	10.62	11.58	
$\Delta E_{x}(^{16}C^{*},^{17}C)$	-0.02	-0.14	±0.0	-0.09	-0.17	-0.03	-0.17	+0.14	+0.06	-0.13	

reference from strongest states with streched configurations [(5/2⁺)³] 9/2⁺

i i i i i i

State No.	2	3	4	5	6	7	8	9	10	11	
E _x (¹⁷ C) [MeV]	0.31	2.06	3.10	4.25	6.20	6.75	7.47	8.94	10.56	11.71	
E _x (¹⁶ C) [MeV]	6.11 ^a	^a 7.74	8.92	9.98	11.85	12.54	13.12	14.90	16.44	17.4	
E _x (¹⁶ C) - 5.82	0.29	1.92	3.10	4.16	6.03	6.72	7.30	9.08	10.62	11.58	+
$\Delta E_{x}(^{16}C^{*},^{17}C)$	-0.02	-0.14	±0.0	-0.09	-0.17	-0.03	-0.17	+0.14	+0.06	-0.13	

reference from strongest states with streched configurations [(5/2⁺)³] 9/2⁺

HIIII

State No.	2	3	4	5	6	7	8	9	10	11	
E _x (¹⁷ C) [MeV]	0.31	2.06	3.10	4.25	6.20	6.75	7.47	8.94	10.56	11.71	
E _x (¹⁶ C) [MeV]	6.11 ^a	7.74	8.92	9.98	11.85	12.54	13.12	14.90	16.44	17.4	
E _x (¹⁶ C) - 5.82	0.29	1.92	3.10	4.16	6.03	6.72	7.30	9.08	10.62	11.58	<
$\Delta E_{x}(^{16}C^{*},^{17}C)$	-0.02	-0.14	±0.0	-0.09	-0.17	-0.03	-0.17	+0.14	+0.06	-0.13	
Г(¹⁷ С) [MeV]	-	0.25	0.10	0.14	0.35	(0.20)	0.50	0.60	0.30	0.30	
Г(¹⁶ С) [MeV]	<0.03 ^a	0.20	≤0.10	0.12	0.22	(0.20)	0.40	0.30	0.15	0.15	
dσ(¹⁶ C)∕dσ(¹⁷ C)	-	2.9	2.0	2.9	3.3	3.0	1.7	0.6	1.3	1.6	

reference from strongest states with streched configurations [(5/2⁺)³] 9/2⁺

State No.	2	3	4	5	6	7	8	9	10	11	
E _x (¹⁷ C) [MeV]	0.31	2.06	3.10	4.25	6.20	6.75	7.47	8.94	10.56	11.71	←
E _x (¹⁶ C) [MeV]	6.11 ^a	7.74	8.92	9.98	11.85	12.54	13.12	14.90	16.44	17.4	
E _x (¹⁶ C) - 5.82	0.29	1.92	3.10	4.16	6.03	6.72	7.30	9.08	10.62	11.58	<
$\Delta E_{x}(^{16}C^{*},^{17}C)$	-0.02	-0.14	±0.0	-0.09	-0.17	-0.03	-0.17	+0.14	+0.06	-0.13	
Г(¹⁷ С) [MeV]	-	0.25	0.10	0.14	0.35	(0.20)	0.50	0.60	0.30	0.30	
Г(¹⁶ С) [MeV]	<0.03 ^a	0.20	≤0.10	0.12	0.22	(0.20)	0.40	0.30	0.15	0.15	
dσ(¹⁶ C)∕dσ(¹⁷ C)	-	2.9	2.0	2.9	3.3	3.0	1.7	0.6	1.3	1.6	

Conclusion: These pairs of corresponding states have a common 3n-structure. Direct population of (sd)³ structures on ¹⁴C, ¹³C through the reaction mechanism. Change of the core changes the excitation energies only by a *global constant*.

Shell model calculations for ¹⁷C

IIIII

Shell model calculations and comparison to ¹⁹O

Shell model calculations and comparison to ¹⁹O

Spectroscopic information: reduced widths $\gamma^2_{\ell,exp}$

İI III İ

	n-de	cay	F_{exp}	= 2 \	$V^2_{\ell, exp} H$	P _{ (E _d	ec		
17.0	Ex	E _x (MeV)	E _{dec}	Г _{ехр}	$\gamma^{2}_{\ell,exp}$ (MeV)				
17 C	¹⁷ C	\rightarrow ¹⁶ C, J ^{π}	(MeV)	(MeV)	<i>l</i> =0	ℓ=2			
(3/2+)	2.06	→ 0.00, 0 ⁺	1.33	0.25	0.085	0.37			
9/2+	3.10	→ 1.77, 2 ⁺	0.60	0.08	0.041	0.55			
(5/2+,9/2+)	4.25	→ 1.77, 2 ⁺	1.75	0.14	0.042	0.13			
(5/2+)	6.20	→ 3.03, 0 ⁺	2.44	0.35	0.088	0.21			
		→ 3.98, 2 ⁺	1.49		0.110	0.43			
(5/2+,7/2+)	6.75	→ 3.98, 2 ⁺	2.04	(0.2)	0.055	0.15			
(11/2+)	7.47	\rightarrow 4.14, 4 ⁺	2.60	0.50	0.120	0.27			
¹⁶ C	¹⁶ C	\rightarrow ¹⁵ C, J ^{π}					_		
(1 ⁻ - 3 ⁻)	7.74	→ 3.10. 1/2-	0.39	0.15	0.094	2.69			
<u></u> 5⁻ ́	8.92	→ 4.22, 5/2 ⁻	0.45	0.04	0.023	0.52			
(3 ⁻ , 5 ⁻)	9.98	→ 4.22, 5/2 ⁻	1.51	0.12	0.038	0.14			
(3-)	11.85	→ 5.87, 1/2 ⁻	1.73	0.22	0.066	0.21			
(3-)	12.54	→ 5.87, 1/2 ⁻	2.42	(0.2)	0.051	0.12			
(6 ⁻ , 5 ⁻)	13.12	→ 6.84, 9/2 ⁻	2.03	0.40	0.110	0.30			

Summary and Conclusions

The structure and assignments of ¹⁷C and ¹⁶C were discussed using the

- dependence of cross sections on dynamical matching conditions
- striking similarity observed in the level schemes of ¹⁶C and ¹⁷C, indicating a common structure of (sd)³ -type for corresp. pairs of states
- changing the core, excitation energies change only by a global constant
- shell model calculations for ¹⁷C, comparison to tentative assignments
- comparison to ¹⁹O experimental levels and SM calculations
- exper. widths of resonances, decay properties, reduced widths

The neutron (sd)³ excitation energies observed in ¹⁷C and ¹⁶C seem to be almost completely independent (within ±0.16 MeV) from the corresponding cores ¹⁴C,¹³C, respectively, except a global constant. This is found for 10 pairs of states for ¹⁷C,¹⁶C over a range of 10MeV excitation energy.