Source Shapes from Low Relative Velocity Correlations

P. Danielewicz ${ }^{1}$

Structure and Reactions of Exotic Nuclei Workshop, Pisa, 24-26 February 2005

Outline

-

Introduction

- Imaging outside of Nuclear Physics
- Heavy-Ion Collisions
- Observed Asymmetries
(2) Correlation Analysis
- Multipole Decomposition \& Imaging
- Cartesian Harmonics
(3) Illustration
- Relative Source
- Classical Coulomb Correlations

4 Summary

Astronomy

Intensity/phase interferometry first used to assess sizes of astronomical objects. Astronomers have since moved to details:

red giant Betelguese
Can we do comparably well?

Figure 5.7: Reconstructed image of Capella, from data taken on 25 October 1997 at a wavelength of $1.3 \mu \mathrm{~m}$. The contours are at $-4,4,10,20,30, \ldots, 90 \%$ of the peak ux. The map has been restored with a circular beam for clarity.
binary star Capella, Monnier Rep Prog Phy 66(03)789

Imaging

Geometric information from imaging. General task:

$$
C(q)=\int d r K(q, r) S(r)
$$

From data w/ errors, $C(q)$, determine the source $S(r)$.
Requires inversion of the kernel K.
Optical recognition: K - blurring function, max entropy method

Factorization of Final-State Amplitude in Reactions

2-ptcle inclusive cross section at low $\left|\mathbf{p}_{1}-\mathbf{p}_{2}\right|$

$$
\frac{d \sigma}{\underset{\mathbf{p}_{1} d \mathbf{p}_{2}}{\text { data }}}=\int \underset{\text { source }}{\int \mathrm{d} \mathbf{r} S_{\mathrm{p}}^{\prime}(\mathbf{r})} \underset{\text { 2-ptcle wf }}{\left|\phi_{\mathbf{p}_{1}-\mathbf{p}_{2}}^{(-)}(\mathbf{r})\right|^{2}}
$$

S^{\prime} : distribution of emission points in 2-ptcle CM Normalizing with 1 -ptcle cross sections yields correlation f: $C\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)=\frac{\frac{d \sigma}{d \mathbf{p}_{1} d \mathbf{p}_{2}}}{\frac{d \sigma}{d \mathbf{p}_{1}} \frac{d \sigma}{d \mathbf{p}_{2}}}$
Then the relative source is normalized to unity: $\int d r S_{p}(r)=1$ Note: C may only give access to the density of relative emission points in 2-ptcle CM, integrated there over time

Factorization of Final-State Amplitude in Reactions

pronounced structure
coarse

2-ptcle inclusive cross section at low $\left|\mathbf{p}_{1}-\mathbf{p}_{2}\right|$

$$
\frac{d \sigma}{\underset{d \mathbf{p}_{1} d \mathbf{p}_{2}}{d a t a}}=\int \underset{\text { source }}{\int \mathrm{d} \mathbf{r}} \underset{\text { 2-ptcle wf }}{S_{\mathrm{p}}^{\prime}(\mathbf{r})}\left|\phi_{\mathbf{p}_{1}-\mathbf{p}_{2}}^{(-)}(\mathbf{r})\right|^{2}
$$

S^{\prime} : distribution of emission points in 2-ptcle CM

Normalizing with 1-ptcle cross sections yields correlation f:

$$
C\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)=\frac{\frac{d \sigma}{d p_{1} d \mathbf{p}_{2}}}{\frac{d \sigma}{d \mathbf{p}_{1}} \frac{d \sigma}{d p_{2}}}=\left.\int \mathrm{d} \mathbf{r} S_{\mathbf{p}}(\mathbf{r})| |_{\mathbf{p}_{1}-\mathbf{p}_{2}}^{(-)}(\mathbf{r})\right|^{2}
$$

Then the relative source is normalized to unity: $\int \mathrm{dr} S_{\mathbf{P}}(\mathbf{r})=1$. Note: C may only give access to the density of relative emission points in 2-ptcle CM, integrated there over time

Time Difference in Emission

Relative Momentum, $q(\mathrm{MeV} / \mathrm{c})$

Anisotropic C, dependent on orientation of \mathbf{q}
Attributable to anisotropic S :

if n emitted earlier than p
Ghetti et al., PRL91(03)0927011

Model fitted to data

Geometry + Freezeout + Collective Motion

\Leftarrow Fitted radii (longitudinal, outward \& sideward) for an anisotropic Gaussian

Models fitted to data...

Integral Relation

Of interest is the deviation of correlation function from unity: $\mathcal{R}(\mathbf{q})=C(\mathbf{q})-1=\int \mathrm{d} \mathbf{r}\left(\left|\phi_{\mathbf{q}}^{(-)}(\mathbf{r})\right|^{2}-1\right) S(\mathbf{r}) \equiv \int \mathrm{d} \mathbf{r} K(\mathbf{q}, \mathbf{r}) S(\mathbf{r})$
Learning on S possible when $\left|\Phi_{a}^{(-)}(\mathbf{r})\right|^{2}$ deviates from 1, either due to symmetrization or interaction within the pair.

Integral Relation

Of interest is the deviation of correlation function from unity:
$\mathcal{R}(\mathbf{q})=C(\mathbf{q})-1=\int \mathrm{d} \mathbf{r}\left(\left|\phi_{\mathbf{q}}^{(-)}(\mathbf{r})\right|^{2}-1\right) S(\mathbf{r}) \equiv \int \mathrm{d} \mathbf{r} K(\mathbf{q}, \mathbf{r}) S(\mathbf{r})$
Learning on S possible when $\left|\phi_{a}^{(-)}(\mathbf{r})\right|^{2}$ deviates from 1, either due to symmetrization or interaction within the pair.
The spin-averaged kernel K depends only on the relative angle between \mathbf{q} and \mathbf{r}. This facilitates the angular decomposition.
With

$$
K(\mathbf{q}, \mathbf{r})=\sum_{\ell}(2 \ell+1) K_{\ell}(q, r) P^{\ell}(\cos \theta), \quad \text { and }
$$

$\mathcal{R}(\mathbf{q})=\sqrt{4 \pi} \sum_{\ell m} \mathcal{R}^{\ell m}(q) \mathrm{Y}^{\ell m}(\hat{\mathbf{q}}), \quad S(\mathbf{r})=\sqrt{4 \pi} \sum_{\ell m} S^{\ell m}(q) \mathrm{Y}^{\ell m}(\hat{\mathbf{r}})$
we reduce the 3D relation to a set of 1D:

$$
\mathcal{R}^{\ell m}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{\ell}(q, r) S^{\ell m}(r)
$$

$$
\ell=0
$$

Different multipolarities of deformation for the source and correlation functions are directly related to each other.
The $\ell=0$ version:

$$
\mathcal{R}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{0}(q, r) S(r)
$$

where $\mathcal{R}(q), K_{0}$ and $S(r)$ - angle-averaged correlation, kernel and source, respectively.
For pure interference, π^{0} 's or $\gamma^{\prime} \mathbf{s}, \Phi_{\mathbf{q}}^{(-)}(\mathbf{r})=\frac{1}{\sqrt{2}}\left(e^{i \boldsymbol{q} \cdot \mathbf{r}}+e^{-i \boldsymbol{q} \cdot \mathbf{r}}\right)$, the kernel $K=|\Phi|^{2}-1$ results from the interference term in $|\Phi|^{2}$ and the correlation-source relation is just the FT :

$$
\mathcal{R}_{0}(q)=\frac{2 \pi}{q} \int d r r \sin (2 q r) S_{0}(r)
$$

Discretization \& Imaging

Source discretization w / χ^{2} fitting applies to any pair:
(1) Discretize integral

$$
\mathcal{R}_{i}=\sum_{j} 4 \pi \Delta r r_{j}^{2} K_{0}\left(q_{i}, r_{j}\right) S\left(r_{j}\right) \equiv \sum_{j} K_{i j} S_{j}
$$

(2) Vary $S\left(r_{j}\right)$ to minimize χ^{2} :

$$
\chi^{2}=\sum_{i} \frac{\left(\sum_{j} K_{i j} s_{j}-\mathcal{R}_{i}^{\text {exp }}\right)^{2}}{\sigma_{i}^{2}}
$$

(3) S_{j}-derivative of χ^{2} yields:

$$
\sum_{i j} \frac{1}{\sigma_{i}^{2}}\left(K_{i j} S_{j}-\mathcal{R}_{i}^{e x p}\right) K_{i j}=0
$$

with solution in a mtx form:

$$
S=\left(K^{\top} K\right)^{-1} K^{\top} \mathcal{R}^{\exp }
$$

pp Imaging

Imaging impacted interpretation of $C_{p p}$, Verde PRC65(02)054609

Gauss par: quickly changing radii. Imaging: quickly changing preequilibrium fraction, non-Gaussian source shapes! $S(r \rightarrow 0)$: preequilibrium fraction, entropy, freeze-out $\rho \ldots$

Anisotropies??

As far as anisotropies are concerned, with

$$
\mathcal{R}(\mathbf{q})=\sqrt{4 \pi} \sum_{\ell m} \mathcal{R}^{\ell m}(q) \mathrm{Y}^{\ell m}(\hat{\mathbf{q}}), \quad S(\mathbf{r})=\sqrt{4 \pi} \sum_{\ell m} S^{\ell m}(q) \mathrm{Y}^{\ell m}(\hat{\mathbf{r}})
$$

we have

$$
\mathcal{R}^{\ell m}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{\ell}(q, r) S^{\ell m}(r)
$$

A set of 1D integral relations

Problem: Why turning real quantities, R \& S, into imaginary, $R^{\ell m} \& S^{\ell m}$?

Anisotropies？？

As far as anisotropies are concerned，with

$$
\mathcal{R}(\mathbf{q})=\sqrt{4 \pi} \sum_{\ell m} \mathcal{R}^{\ell m}(q) \mathrm{Y}^{\ell m}(\hat{\mathbf{q}}), \quad S(\mathbf{r})=\sqrt{4 \pi} \sum_{\ell m} S^{\ell m}(q) \mathrm{Y}^{\ell m}(\hat{\mathbf{r}})
$$

we have

$$
\mathcal{R}^{\ell m}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{\ell}(q, r) S^{\ell m}(r)
$$

A set of 1D integral relations

Problem：Why turning real quantities，$R \& S$ ，into imaginary， $R^{\ell m} \& S^{\ell m}$ ？Other basis than $\mathrm{Y}^{\ell m}$ ？？

Cartesian Basis

Take the direction vector: $\hat{n}_{\alpha}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ Rank- ℓ tensor product:

$$
\left(\hat{n}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}} \equiv \hat{n}_{\alpha_{1}} \hat{n}_{\alpha_{1}} \ldots \hat{n}_{\alpha_{\ell}}=\sum_{\ell^{\prime} \leq \ell, m} c_{\ell^{\prime} m} \mathrm{Y}^{\ell^{\prime} m}
$$

$\mathcal{D}^{(\ell, \ell)}$ projection operator that, within the space of rank- ℓ cartesian tensors, removes $\mathrm{Y}^{\ell^{\prime \prime} m}$ components with $\ell^{\prime}<\ell$:

$$
\left(\mathcal{D} \hat{h}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}}=\sum_{m} c_{\ell m} \mathrm{Y}^{\ell m}
$$

The components $\mathcal{D} \hat{n}^{\ell}$ are real and can be used to replace $\mathrm{Y}^{\ell m}$.

Low- ℓ Cartesian Harmonics

$$
\begin{aligned}
\mathcal{D} \hat{n}^{0} & =1 \\
\left(\mathcal{D} \hat{n}^{1}\right)_{\alpha} & =\hat{n}_{\alpha} \\
\left(\mathcal{D} \hat{n}^{2}\right)_{\alpha_{1} \alpha_{2}} & =\hat{n}_{\alpha_{1}} \hat{n}_{\alpha_{2}}-\frac{1}{3} \delta_{\alpha_{1} \alpha_{2}} \\
\left(\mathcal{D} \hat{n}^{3}\right)_{\alpha_{1} \alpha_{2} \alpha_{3}} & =\hat{n}_{\alpha_{1}} \hat{n}_{\alpha_{2}} \hat{n}_{\alpha_{3}}-\frac{1}{5}\left(\delta_{\alpha_{1} \alpha_{2}} \hat{n}_{\alpha_{3}}+\delta_{\alpha_{1} \alpha_{3}} \hat{n}_{\alpha_{2}}+\delta_{\alpha_{2} \alpha_{3}} \hat{n}_{\alpha_{1}}\right)
\end{aligned}
$$

\mathcal{D} can be called a detracing operator as

$$
\sum_{\alpha}\left(\mathcal{D} \hat{h}^{\ell}\right)_{\alpha \alpha \alpha_{3} \ldots \alpha_{\ell}}=0
$$

Decomposition with Cartesian Harmonics

Completeness relation $\left(\mathcal{D}=\mathcal{D}^{\top}=\mathcal{D}^{2}\right)$:

$$
\begin{aligned}
\delta\left(\Omega^{\prime}-\Omega\right) & =\frac{1}{4 \pi} \sum_{\ell} \frac{(2 \ell+1)!!}{\ell!} \sum_{\alpha_{1} \ldots \alpha_{\ell}}\left(\mathcal{D} \hat{\prime}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}}\left(\mathcal{D} \hat{n}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}} \\
& =\frac{1}{4 \pi} \sum_{\ell} \frac{(2 \ell+1)!!}{\ell!} \sum_{\alpha_{1} \ldots \alpha_{\ell}}\left(\mathcal{D} \hat{\prime}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}} \hat{n}_{\alpha_{1}} \ldots \hat{n}_{\alpha_{\ell}}
\end{aligned}
$$

In consequence
$\mathcal{R}^{\prime}(q)$
where coefficients are angular moments

Decomposition with Cartesian Harmonics

Completeness relation ($\mathcal{D}=\mathcal{D}^{\top}=\mathcal{D}^{2}$):

$$
\begin{aligned}
\delta\left(\Omega^{\prime}-\Omega\right) & =\frac{1}{4 \pi} \sum_{\ell} \frac{(2 \ell+1)!!}{\ell!} \sum_{\alpha_{1} \ldots \alpha_{\ell}}\left(\mathcal{D} \hat{\prime}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}}\left(\mathcal{D} \hat{n}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}} \\
& =\frac{1}{4 \pi} \sum_{\ell} \frac{(2 \ell+1)!!}{\ell!} \sum_{\alpha_{1} \ldots \alpha_{\ell}}\left(\mathcal{D} \hat{\prime}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}} \hat{n}_{\alpha_{1}} \ldots \hat{n}_{\alpha_{\ell}}
\end{aligned}
$$

In consequence

$$
\mathcal{R}(\mathbf{q})=\int \mathrm{d} \Omega^{\prime} \delta\left(\Omega^{\prime}-\Omega\right) \mathcal{R}\left(\mathbf{q}^{\prime}\right)=\sum_{\ell} \sum_{\alpha_{1} \ldots \alpha_{\ell}} \mathcal{R}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(q) \hat{q}_{\alpha_{1}} \ldots \hat{q}_{\alpha_{\ell}}
$$

where coefficients are angular moments

$$
\mathcal{R}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(q)=\frac{(2 \ell+1)!!}{\ell!} \int \frac{\mathrm{d} \Omega_{\mathbf{q}}}{4 \pi} \mathcal{R}(\mathbf{q})\left(\mathcal{D} \hat{q}^{\ell}\right)_{\alpha_{1} \ldots \alpha_{\ell}}
$$

Consequences

Cartesian coefficients for $\mathcal{R} \& S$ directly related to each other:

$$
\mathcal{R}_{\alpha_{1} \cdots \alpha_{\ell}}^{(\ell)}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{\ell}(q, r) \mathcal{S}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(r)
$$

For weak anisotropies, only lowest- ℓ matter:

quadrupole distortion, 2 magnitude values +3 orthogonal

Consequences

Cartesian coefficients for $\mathcal{R} \& S$ directly related to each other:

$$
\mathcal{R}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{\ell}(q, r) \mathcal{S}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(r)
$$

For weak anisotropies, only lowest- ℓ matter:

$$
\mathcal{R}(\mathbf{q})=\mathcal{R}^{(0)}(q)+\sum_{\alpha} \mathcal{R}_{\alpha}^{(1)}(q) \hat{q}_{\alpha}+\sum_{\alpha_{1} \alpha_{2}} \mathcal{R}_{\alpha_{1} \alpha_{2}}^{(2)}(q) \hat{q}_{\alpha_{1}} \hat{q}_{\alpha_{2}}+\ldots
$$

Consequences

Cartesian coefficients for $\mathcal{R} \& S$ directly related to each other:

$$
\mathcal{R}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(q)=4 \pi \int \mathrm{~d} r r^{2} K_{\ell}(q, r) \mathcal{S}_{\alpha_{1} \ldots \alpha_{\ell}}^{(\ell)}(r)
$$

For weak anisotropies, only lowest- ℓ matter:

$$
\mathcal{R}(\mathbf{q})=\mathcal{R}^{(0)}(q)+\sum_{\alpha} \mathcal{R}_{\alpha}^{(1)}(q) \hat{q}_{\alpha}+\sum_{\alpha_{1} \alpha_{2}} \mathcal{R}_{\alpha_{1} \alpha_{2}}^{(2)}(q) \hat{q}_{\alpha_{1}} \hat{q}_{\alpha_{2}}+\ldots
$$

$\mathcal{R}^{(0)}$ - angle-averaged correlation
$\mathcal{R}_{\alpha}^{(1)} \equiv R^{(1)} e_{\alpha}^{(1)}$ - dipole distortion, magnitude + direction vector
$\mathcal{R}_{\alpha \beta}^{(2)}(q)=R_{1}^{(2)} e_{1 \alpha}^{(2)} e_{1 \beta}^{(2)}+R_{3}^{(2)} e_{3 \alpha}^{(2)} e_{3 \beta}^{(2)}-\left(R_{1}^{(2)}+R_{3}^{(2)}\right) e_{2 \alpha}^{(2)} e_{2 \beta}^{(2)}$

- quadrupole distortion, 2 magnitude values +3 orthogonal direction vectors

Sample Relative Source

Anisotropic Gaussian, elongated along the beam axis, displaced along the pair momentum

moments evaluated moving
at constant r about the origin

Low- ℓ Characteristics

moments evaluated moving
at constant r about the origin

```
\[
S^{(\ell)} \propto r^{\ell}
\]
```

Values + Angles

Classical Coulomb Correlations

Coulomb kernel is a function of $\theta_{\text {qr }}$ and r / r_{c}, where r_{C} distance of closest approach in head-on collision, $\frac{q^{2}}{2 m_{a b}}=\frac{Z_{a} z_{b} e^{2}}{4 \pi \epsilon_{0} r_{c}}$:

$$
|\phi|^{2}=\frac{\mathrm{d}^{3} q_{0}}{\mathrm{~d}^{3} q}=\frac{\Theta\left(1+\cos \theta_{\mathbf{q r}}-2 r_{c} / r\right)\left(1+\cos \theta_{\mathbf{q r}}-r_{c} / r\right)}{\sqrt{\left(1+\cos \theta_{\mathbf{q r}}\right)^{2}-\left(1+\cos \theta_{\mathbf{q r}}\right) 2 r_{c} / r}}
$$

$K_{0}=\Theta\left(r-r_{c}\right) \sqrt{1-r_{c} / r}-1$

Classical Coulomb Correlations

Coulomb kernel is a function of $\theta_{\text {qr }}$ and r / r_{c}, where r_{C} distance of closest approach in head-on collision, $\frac{q^{2}}{2 m_{a b}}=\frac{Z_{a} z_{b} e^{2}}{4 \pi \epsilon_{0} r_{c}}$:

$$
|\phi|^{2}=\frac{\mathrm{d}^{3} q_{0}}{\mathrm{~d}^{3} q}=\frac{\Theta\left(1+\cos \theta_{\text {qr }}-2 r_{c} / r\right)\left(1+\cos \theta_{\mathbf{q r}}-r_{c} / r\right)}{\sqrt{\left(1+\cos \theta_{\mathbf{q r}}\right)^{2}-\left(1+\cos \theta_{\mathbf{q r}}\right) 2 r_{c} / r}}
$$

$K_{0}=\Theta\left(r-r_{c}\right) \sqrt{1-r_{c} / r}-1$
Correlation reflects the distribution of relative Coulomb trajectories emerging from an anisotropic source.

Momentum from Spatial Anisotropy: Evolution with r_{c}

No trajectories can contribute from $r<r_{c}$

C directly reflects anisotropies of S margins
$r \gtrsim r_{c}$

$r_{C} \ll r$
\mathcal{R} reflects integral characteristics of S

Coulomb Correlation

$r_{c}^{-1 / 2} \propto q$

For more schematic sources, one or more correlation values vanish and/or angles exhibit less variation.
90° jump associated with K_{2}
sign change and prolate-oblate
transition

Coulomb Correlation

$r_{c}^{-1 / 2} \propto q$
For more schematic sources, one or more correlation values vanish and/or angles exhibit less variation.

of Coulomb radius

Coulomb Correlation

$r_{c}^{-1 / 2} \propto q$
For more schematic sources, one or more correlation values vanish and/or angles exhibit less variation.
90° jump associated with K_{2} sign change and prolate-oblate transition

Imaging

Assumption: $\ell \leq 2$ cartesian coefficients measured at 80 values of $r_{c}^{-1 / 2}$ subject to an r.m.s. error of 0.015 .
No of restored values, with the region of $r<17 \mathrm{fm}$: 5 for $\ell=0$, 4 for $\ell=1$ and 3 for $\ell=2$.
$r<17 \mathrm{fm}$ Source Characteristics:

	Unit	Restored	Original
$4 \pi \int \mathrm{dr} r^{2} S^{(0)}$		0.99 ± 0.05	1.00
$\langle x\rangle$	fm	2.47 ± 0.11	2.45
$\langle z\rangle$	fm	4.25 ± 0.13	3.90
$\left\langle(x-\langle x\rangle)^{2}\right\rangle^{1 / 2}$	fm	3.80 ± 0.24	3.90
$\left\langle y^{2}\right\rangle^{1 / 2}$	fm	3.81 ± 0.22	3.91
$\left\langle(z-\langle z\rangle)^{2}\right\rangle^{1 / 2}$	fm	5.54 ± 0.19	5.60
$\langle(x-\langle x\rangle)(z-\langle z\rangle)\rangle$	fm^{2}	2.23 ± 1.49	-0.41

Summary

- Relative correlations give access to space-time geometry of emission.
- Cartesian harmonic coefficients allow for a systematic quantification of anisotropic correlation functions.
- The correlation coefficients are directly related to the analogous respective coefficients for the relative source.
- Features of the source anisotropies may be, to an extent, read off straight from the correlation anisotropies. Otherwise, they can be imaged.
nucl-th/0501003
Collaborators: S. Pratt, D. Brown, G. Verde

Summary

- Relative correlations give access to space-time geometry of emission.
- Cartesian harmonic coefficients allow for a systematic quantification of anisotropic correlation functions.
- The correlation coefficients are directly related to the analogous respective coefficients for the relative source.
- Features of the source anisotropies may be, to an extent, read off straight from the correlation anisotropies. Otherwise, they can be imaged.
nucl-th/0501003
Collaborators: S. Pratt, D. Brown, G. Verde

Summary

- Relative correlations give access to space-time geometry of emission.
- Cartesian harmonic coefficients allow for a systematic quantification of anisotropic correlation functions.
- The correlation coefficients are directly related to the analogous respective coefficients for the relative source.
- Features of the source anisotropies may be, to an extent, read off straight from the correlation anisotropies. Otherwise, they can be imaged.
nucl-th/0501003
Collaborators: S. Pratt, D. Brown, G. Verde...

