Point charge in front of a conducting sphere

A point charge q is at distance d from the center of a conducting sphere of radius a. In both cases of a grounded sphere and of an isolated sphere having charge Q, find

Solution

a) The problem of finding the potential for a charge q in front of a grounded sphere and at a distance x from the center is solved by placing an image charge $q^{\prime}=-(a / x) q$ at a distance $x^{\prime}=a^{2} / x$ from the center of the sphere, along the same direction ($\hat{\mathbf{x}}$) from the center to q.

If the sphere is isolated and has a net charge Q, after placing q^{\prime} we must distribute the additional charge $Q-q^{\prime}$ in order that the
 potential remains uniform on the surface. This is achieved by distributing such charge uniformly on the surface, which corresponds to add a second image charge $Q-q^{\prime}$ in the center of the sphere. The case $Q=0$ corresponds to a charge neutral, isolated sphere.
b) The total force \mathbf{f} on q is the sum of the force between q and each of the three image charges $\left(q_{1}=q^{\prime}, q_{2}=-q^{\prime}, q_{3}=Q\right)$, as if the image charges were real. Thus $\mathbf{f}=\sum_{i=1} 1^{i=3} \mathbf{f}_{i}$ where $\mathbf{f}_{i}=k_{0} \hat{\mathbf{x}}\left(q q_{i}\right) /\left(x-x_{i}\right)^{2}$ with $x_{1}=x^{\prime}$ and $x_{2}=x_{3}=0$. Explicitly

$$
\begin{equation*}
f_{1}=k_{0} \frac{q q^{\prime}}{\left(x-x^{\prime}\right)^{2}}=-k_{0} \frac{q^{2} a x}{\left(x^{2}-a^{2}\right)^{2}}, \quad f_{2}=-k_{0} \frac{q q^{\prime}}{x^{2}}=k_{0} q^{2} \frac{a}{x^{3}}, \quad f_{3}=k_{0} \frac{q Q}{x^{2}} \tag{1}
\end{equation*}
$$

c) To find the potential energy we displace the charge q along the x-axis from the initial position $x=d$ up to $x=+\infty$. The work done by each force term is given by

$$
\begin{align*}
W_{1} & =\int_{d}^{\infty} f_{1} d x=\left.k_{0} \frac{q^{2} a}{2\left(x^{2}-a^{2}\right)}\right|_{d} ^{\infty}=-k_{0} \frac{q^{2} a}{2\left(d^{2}-a^{2}\right)}, \\
W_{2} & =\int_{d}^{\infty} f_{2} d x=-\left.k_{0} \frac{q^{2} a}{2 x^{2}}\right|_{d} ^{\infty}=k_{0} \frac{q^{2} a}{2 d^{2}} . \\
W_{3} & =\int_{d}^{\infty} f_{3} d x=k_{0} \frac{q Q}{d} . \tag{2}
\end{align*}
$$

The potential energy $U=W_{1}$ for the grounded sphere and $U=W_{1}+W_{2}+W_{3}$ for the isolated sphere.
It may be interesting to compare the result for U with the potential energy $U_{\text {real }}$ we would obtain if all the charges were real $\left(q_{0}=q\right)$:

$$
\begin{align*}
U_{\text {real }} & =k_{0} \sum_{i<j} \frac{q_{i} q_{j}}{r_{i j}} \\
& =k_{0}\left(\frac{q_{0} q_{1}}{d-d^{\prime}}+\frac{q_{0} q_{2}}{d}+\frac{q_{0} q_{3}}{d}+\frac{q_{1} q_{2}}{d^{\prime}}+\frac{q_{2} q_{3}}{d^{\prime}}\right) \\
& =k_{0}\left(-\frac{q^{2} a}{d^{2}-a^{2}}+\frac{q^{2} a}{d^{2}}+\frac{q Q}{d}-\frac{q^{2}}{d}-\frac{Q q}{a}\right), \tag{3}
\end{align*}
$$

where $d^{\prime}=a^{2} / d$. From the expression of $U_{\text {real }}$ as a sum of interaction energies between pair of charges, we obtain U by keeping as a whole the $(0,3)$ term corresponding to the interaction of q with the actual charge on the sphere Q, then by adding half of the $(0,1)$ and $(0,2)$ terms corresponding to the interaction of q with the images $\pm q^{\prime}$, and by neglecting the terms $(1,2)$ and (1,4) corresponding to the mutual interaction of image charges.

