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CNGS Experiment
Gran Sasso setup Cern production
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CNGS Experiment

• m(π)=140 MeV

• m(K)=494 MeV

• m(μ)=106 MeV

• m(e)=0.5 MeV

• m(ν)≈0

small transverse
momentum in π→μν

maximizes the number
of collimated ν.
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CNGS Experiment

• From 10�� initial protons at Cern, 10� neutrinos events were

recorded at Gran Sasso and only 10�	true candidates.

• Since an analogous experiment (MINOS at Fermilab in 2007) 

found an indication of possible superluminal neutrino speed, 

it was interesting to determine this speed also at CNGS.

• Dividing the total distance Cern-SPS to  Gran Sasso facility by 

the time of flight of neutrinos, it came the astonishing result:



This result clashes with the basic principles of

special relativity.

If a faster-than-light message is sent by an

observer at rest towards another observer

in motion and the latter replies back the

message, the answer might arrive before

the message was sent!!



CNGS Experiment (end)

Ereditato making statements before discovering a misconnection

among GPS cables.

By March 2012 ICARUS collaboration found a result compatible with �.



…but not all has been a waste

of time…
• The surprising findings of OPERA team spurred a great deal of 

research in order to understand what was going on about

neutrinos and relativity.



• We are going to see how the inclusion of gravity changes

drastically all conclusions about superluminal speeds.

• The above argument demonstrating that superluminal signals

would generate logical contradictions applies rigorously only

in special relativity: the theory of Einstein without gravity.

• Moreover, what really can attain superluminal values are the 

mean velocities, not the instantaneous ones…

• …but most of the velocities usually measured are precisely

mean (in particular the one described by the OPERA team).

• An exception are the velocities of celestial objects when they

are determined by studying the Doppler effect on the 

spectrum of light emitted by the object.



A tour around relativity

Don’t be afraid, just smile!!



A tour around relativity

The pivotal paradigm in relativity is

the metric

Greek indices (μ,ν,α,β,…) stand indistinctly for time or spatial coordinates.

Nought index (0) stands for the time coordinate.

Latin indices (
, �, 
,…) indicate spatial coordinates.


�
 …	run from 1 to 3.

μναβ,… run from 0 to 3.



A tour around relativity

�� ��

�� ��
���=��� is symmetric, as every metric!

Given infinitesimal increments ��, ��, the quantity

��� = � ���
�

�,���
������

is called squared proper length.



A tour around relativity

Since, mathematically, a metric is a tensor, it transforms

in such a way as to leave �� invariant.

It is clear that, under coordinate transformations �� → ���, ���
goes over to

���� = ����
��� 	���

THEREFORE, UNDER ANY COORDINATE

TRANSFORMATION � REMAINS UNVARIED.



A tour around relativity

 !" # 1
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Given an energy-momentum tensor describing the matter

contents, the following expression

provides a non-linear partial differential equation of second order

for the metric.  �� is the Ricci tensor and  the scalar of curvature.

We shall not solve this equation, but show two physically

interesting solutions…

(�� is the matter tensor. For instance, for a certain

density of matter ρ, (�� � ρ and all the other (��	zero.



A tour around relativity

NO MATTER:

SPHERICAL MASS DISTRIBUTION:

��� � �(��)�#��,�

��� � 1 # 2'-
��. �(��)� # �.�

1 # 2'-
��.

#	.��θ� # .� sin θ��φ�

Minkowski metric

Schwarzschild metric



A tour around relativity

A VERY IMPORTANT ADVICE

Coordinates are mere labels, like street numbers.

Distances or time intervals cannot be calculated by just

coordinate differences (like in usual Euclidean space with

Cartesian coordinates).

THUS:



A tour around relativity

What is (or )?

It depends!

Much as the spatial Euclidean metric serves for

calculating distances in  �, � (or ��) allows to

determine both time intervals and spatial distances.



A tour around relativity

TIME INTERVALSTIME INTERVALSTIME INTERVALSTIME INTERVALS

The time displayed by a clock at

rest at the spatial position 4
(coordinates �,5) is �/�.

It is presumed that the 0-coordinate

(which is �� ≡ ��) changes but the

spatial coordinates remain fixed

and equal to �,5.



A tour around relativity
The case of the Minkowski metric is very simple and also well-known: the

ticking of the clock time equals the successive values taken by the time

coordinate ��.

However, the case of the Schwarzschild metric suggests that clocks

at different heights tick differently. Indeed, given a unique coordinate time

interval, Δ�, clocks at radial coordinates .5 and .8indicate

CLOCK TIME AT 9: 	� ;
< � 	 1 # �=>

<?@A 	�

CLOCK TIME AT 9B 	= ;
< = 	 1 # �=>

<?@C 	�

Therefore the ratio of the two times is not 1…



A tour around relativity

Robert Pound (picture) and

Glen Rebka demonstrated

experimentally the correctness

of the above statement.

In 1959 they compared atomic clocks

separated by a height of 22.5 meters,

(resorting to the recently discovered

Mösbauer effect). The agreement

was excellent.



A tour around relativity

SPATIAL DISTANCESSPATIAL DISTANCES

Spatial distances

are the value of #��
at fixed time coordinate.



A tour around relativity

Therefore the true distance between .5 and .8 in a Schwarzschild metric

(what one would measure by counting how many rulers can be laid in order

to exactly cover the separation from .5 to .8) is given by

TRUE DISTANCE = D #��� �	D E@
�F?GHI?J

@C
@A

	.8 # .5NOTE: The true distance is NOTNOTNOTNOT	.8 # .5
because coordinates are just labels!



A tour around relativity

For the Earth, this correction is extremely small:

TRUE DISTANCE ≈ .8 # .5 +	=><? 	 log
@C
@A

=>
<? ≈ 4 mm.

For .5 �	Earth radius and .8 � .5 + δ (δ ≪ .5),

log .8.5 ≈
δ
.5 ≪ 1.



A tour around relativity

If both spatial and temporal coordinates are left to vary, we can

follow the trajectory of moving particles.

An interesting case is that

of light. In special relativity

��,
�� � �

Hence, for light rays

�� � 0	always.



A tour around relativity

This is true for special relativity, that is, in absence of gravity.

WHAT ABOUT GRAVITY?

Does light travel at 299,792,458 meters/second also in gravity?



A tour around relativity

WHAT TO DO?



A tour around relativity

PRINCIPLE OF EQUIVALENCE



A tour around relativity

The PRINCIPLE OF EQUIVALENCE states:

If you are small

enough and you are

falling down, you

cannot feel gravity.



A tour around relativity



A tour around relativity

More mathematically: at any point in spacetime

a coordinate transformation can be found such that

in a close neighbourhood of this point the metric in

the new coordinates is Minkowski.

Since in these coordinates (and close to the chosen point)

everything behaves as in special relativity, the speed of light

is surely � and �� � 0.
Ergo, being	� coordinate invariant, it remains constant in the

original (not motivated by the principle of equivalence) coordinates.

S T� � UHence light rays go at S LOCALLY and T� � U.



CONGRATULATIONS!!

WE HAVE NOW GOT ALL NECESSARY INGREDIENTS.



Let us consider a light ray following the spatial trajectory

VW X , VY X , VZ(X)
from point : to point B where parameter X varies from

X: at : to XB at B.
Our goal is to calculate the MEAN VELOCITY of the light ray.

The total travelled distance is

Δ[ � \ TX	 #�]^_V̀^
^,_

V̀_
XB
X:

where overdots denote λ derivatives.



As clocks run differently in different spatial positions,

we have to clearly specify WHERE the observer lies.

We choose to place him at the end of the trajectory, B,

although this detail is largely immaterial.

So, according to what we have just learnt,

FIRSTLY it should be obtained the coordinate time interval ab
needed by the light ray to travel from :	to B and

SECONDLY the time really displayed by the observer’s clock

at B will be determined.



To find ab we resort to the vanishing property of � in light.

Specifically:

Δb � W
S \ TX	 # W

]UU�]^_V̀^
^,_

V̀_
XB
X:

Δτ � ]UU B
S \ TX	 # W

]UU�]^_V̀^
^,_

V̀_
XB
X:

Consequently,



\ TX	 # W
]UU�]^_V̀^

^,_
V̀_

XB
X:

� 1
��� λe

\ TX	 #�]^_V̀^
^,_

V̀_
XB
X:

The mean value theorem enables us to simplify the expression.

The ratio 
a[
af gives the desired MEAN VELOCITY.

There is indeed an intermediate Xg ∈ X:, XB for which



Finally, 

The surprise is that this ratio is barely equal to S.



In summary, mean velocities need not be S.
But instantaneous velocities ARE always S,

(as prescribed by the PRINCIPLE OF EQUIVALENCE).

Indeed, if we make points : and B collapse, then also the

intermediate point labelled with Xg tends to B and so the

above ratio of radicands tends to 1.

lim5→8
Δj
Δτ � limkl→kC

��� λe
��� λ8 � � �



The Schwarzschild metric offers an analytically

calculable instance of the above effect:



The Schwarzschild metric offers an analytically

calculable instance of the above effect:



The terrestrial gravity is too weak.

Effects like the one described in this seminar are completely negligible.

In particular, the excess velocity claimed by the OPERA team

is almost three orders of magnitude larger than our prediction.

There is, though, an old experiment that necessarily

has detected such an effect: the LUNAR LASER RANGINGLUNAR LASER RANGINGLUNAR LASER RANGINGLUNAR LASER RANGING

It consists in sending a laser pulse to the Moon and observing

the reflected light. The (round trip time)/2 multiplied by S yields

the Earth-Moon distance…

S	!BUT THE SPEED OF THE SIGNAL IS NOT S	!



Lunar Laser Ranging

Retroreflectors:



Lunar Laser Ranging

If the effect described here is taken into account,

the correction turns out to be about 53 cm., well

beyond the stipulated precision of the experiment

(about 1-2 cm.).

Nevertheless, the LLR collaboration recorded the coordinates

of the Moon and other planets and satellites (in a certain solar

system coordinate set). In this way, they implicitly included the

effects studied here.



Conclusions
• Care must be taken in defining a velocity in the context of general relativity.

• Local definitions comply with the basic tenets of the theory: they yield

exactly � but…

• non-local definitions (like the above-analysed MEAN VELOCITY) do not

necessarily observe this rule.

• Relativity may still teach us many surprising aspects of Nature…


