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Techniques and challenges of ion beam preparation

After production target Measurement,
or post-accel.

products of interest
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Ion (beam) manipulation
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Beam
preparation

=     Purification +   Manipulation
Sub-Task 1                       Sub-Tasks 2 and 3

CERN – JYFL – LMU – MSL – INFN – CSNSM - LPSC

EURISOL-DS; Task 9, Beam preparation:
The objective of this task is to study the feasibility of a new generation of devices with orders of magnitude greater 
capacity and throughput in order to accumulate, cool, bunch and purify the high intensity radioactive ion beams of 
EURISOL.
(+ Construction of the prototype for beta-beams)
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Ion group (beam,cloud) properties

energy energy degrading
stopping, trapping
acceleration

• energy spread cooling, trapping

• emittance cooling

• size cooling, trapping

• time structure pulsing
bunching

Ion properties

• charge state ionization

• ionic/atomic state optical pumping

• spin direction alignment
polarization

“ion beam cooler”
(gas-filled RF quadrupole)

Sub-Task 2

“charge breeder”
(ECRIS & EBIS)

Sub-Task 3

Manipulation of radioactive ions
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Target and ion source tricks

• Neutron converter removal of spallation products
– Absolute yield lower
– Compensated by the selectivity (purity)

• Molecular sidebands reduction of contaminants
– Transfers products to new clean mass region
– No laser ionization

• Ion guide approach (IGISOL) access to refractory elements
– No chemical selectivity
– Fast
– Overall efficiency low

• Laser ionization chemical selectivity (Z)
– Enhancement of chemical selectivity
– Isomeric selectivity

• Laser ion source trap (LIST)
– Reduction of contaminants enhanced selectivity
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Another example: Spectrscopy of n-def. Sr isotopes produced
from Nb-target and extracted as SrF molecule

No target-produced background (especially Rb !)

Molecular sidebands
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Thin target approach for refractory isotopes:

IGISOL (Ion Guide Isotope Separator On-Line) 

IGISOL at JYFL
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LIST (Laser ion source trap)

K. Blaum et al.,
Nucl. Instr. and Meth. B204, 331 (2003)

Ion/atom
source

Repeller
electrodes

Ion trap

Coupling to isotope
separator

Laser

beams

- Atoms exiting the source are selectively ionised by the lasers
- Ions produced in the source repelled back - >selectivity boost
- Laser-atom interaction length = vatom/laser rep. rate
- Radial overlap over the interaction length critical for efficiency

ISOLDE: diffusion/effusion of neutrals out from the source
IGISOL: gas jet transport of neutrals out from the gas cell
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Magnetic separation (HRS at ISOLDE)
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Basics of magnetic separation
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Optimization of mass purification
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Sub-1: EURISOL-HRS

(T. Giles, CERN)

Multiple multipolar dipoles

CorrectionsLarge dispersion
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Purification in the Penning trap

• FWHM ~ 20 Hz
• m/δm = 145000 possible (above spectrum m/δm ~ 53000) V. Kolhinen et al., NIM A528 (2004) 776 
• sufficient for mass spectroscopy S. Rinta-Antila, PRC 70 (2004) 011301(R)
• ”Experimental approach”, 
• RIB-facility use demonstrated at REX-ISOLDE 
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Recipe: 
Dipole excitation to blow up the radial motion of all ions
Mass-selective centering of wanted ions by resonance
quadrupole excitation
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Trap-assisted spectroscopy
Rh

Pd Ag

115Ru

J. Kurpeta et al. EPJ A 31 (2007) 263

MRP 30000
Texc 121 ms

A=115 from IGISOL

A=115 with ωc(115Ru)

The first new decay
scheme observed: 115Ru
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Sub-2:
Ion cooling and bunching in
linear Paul traps (D. Lunney)
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• reducing beam size, emittance, energy spread
• storing
• bunching (not chopping !)

the output does not depend on the input !

principle

reducing energy spread:
thermalization in (He) gas

confinement by E-fields
• RF multipole
• Axial electrodes

+

+

__ +

Ion beam cooler: principle

RF
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Present RFQ-devices
Name Input Beam Input 

Emittance
Cooler Length R0 RF Voltage, Freq, DC Mass 

Range
Axial Voltage Pressure Output Beam Qualities

Colette 60 keV ISOLDE beam 
decelerated to ≤ 10 

eV

~ 30 π-mm-
mrad

504 mm (15 segments, 
electrically isolated)

7 mm Freq : 450 – 700 kHz -- 0.25 V/cm 0.01 mbar He Reaccelerated to up to 59.99 keV
with long. energy spread ~10 eV

LPC Cooler SPIRAL type beams Up to ~ 100 
π-mm-mrad

468 mm (26 segments, 
electrically isolated)

15 mm RF : up to 250 Vp, Freq : 
500 kHz – 2.2 MHz

-- -- up to 0.1 mbar --

SHIPTRAP 
Cooler

SHIP type beams 20-
500 keV/A

-- 1140 mm (29 
segments, electrically 

isolated)

3.9 mm RF: 30-200 Vpp, Freq: 800 
kHz – 1.2 MHz

up to 260 
amu

Variable: 0.25 
– 1 V/cm

~ 5×10-3 mbar 
He

--

JYFL Cooler IGISOL type beam at 
40 keV

Up to 17 π-
mm-mrad

400 mm (16 
segmentes)

10 mm RF: 200 Vp, Freq: 300 kHz 
– 800 kHz

-- ~1 V/cm ~0.1 mbar He ~3 π-mm-mrad, Energy spread < 4 
eV

MAFF Cooler 30 keV beam 
decelerated to ~100 

eV

-- 450mm 30mm RF: 100 –150 Vpp, Freq: 5 
MHz

-- ~0.5 V/cm ~0.1 mbar He energy spread = 5 eV, Emittance
@ 30keV: from = 36 π-mm-mrad to 

eT = 6 π-mm-mrad

ORNL Cooler 20-60 keV negative 
RIBs decelerated to 

<100 eV

~50 π-mm-
mrad (@ 20 

keV)

400 mm 3.5 mm RF: ~400 Vp, Freq: up to 
2.7 MHz

-- up to ±5 kV 
on tapered 

rods

~0.01 mbar Energy spread ~2 eV

LEBIT 
Cooler

5 keV DC beams -- -- -- -- -- -- ~1×x10−1 mbar 
He (high-p 

sect.)

--

ISCOOL 60 keV ISOLDE beam up to 20 π-
mm-mrad

800 mm (using 
segmented DC wedge 

electrodes)

20 mm RF: up to 380 V, Freq: 300 
kHz - 3MHz

10-300 
amu

~0.1V/cm 0,01 - 0,1 mbar 
He

--

ISOLTRAP 
Cooler

60 keV ISOLDE beam -- 860 mm (segmented) 6 mm RF: ~125 Vp, Freq: ~1 
MHz.

-- -- ~2×10-2 mbar 
He

elong ≈ 10 eV us, etrans ≈ 10p mm 
mrad.

TITAN RFCT continuous 30–60 
keV ISAC beam

-- -- -- RF: 1000 Vpp, Freq: 300 
kHz - 3 MHz

-- -- -- 6 π-mm-mrad at 5 keV extraction 
energy

TRIMP 
Cooler

TRIMP beams -- 660 mm (segmented) 5 mm RF= 100 Vp, Freq.: up to 
1.5 MHz

6 < A < 
250

-- up to 0.1 mbar --

SPIG Leuven 
cooler

IGISOL Beams -- 124 mm (sextupole rod 
structure)

1.5 mm RF= 0-150 Vpp, Freq.: 4.7 
MHz

-- -- ~50 kPa He Mass Resolving Power (MRP)= 
1450

Argonne 
CPT cooer

-- -- -- -- -- -- -- -- --

SLOWRI 
cooler

-- -- 600 mm (segmented 
sextuple rod structure)

8 mm RF= 400 Vpp, Freq.: 3.6 
MHz

-- -- ~10 mbar He --

• Plenty of devices prototyped
• Similar devices in size and operation parameters
• Different solutions for the electrode structures to 

provide transverse and axial confinement
• Perform very well : δE < 1 eV, dt ~ few μs, e ~ few π

mm mrad, on-line efficiencies 80 %
• Not optimized for high intensities ! (EURISOL-DS)
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Next-generation RFQ for EURISOL

Technical proposalr by O. Gianfrancesco

(in terms of an ion beam/cloud capacity)

84 22
0

2 Vq
mr
eVD Mathieu

RF

==
ω

10-100-fold increase in the capacity based on the
increasing of the pseudopotential depth D

Technical challenge to be solved:              20-30 MHz at 10 kV !
10 μA beam or cooled bunches of 6x109 ions at 100 Hz rate

(D. Lunney, Orsay)

e.g. A=40; 2x0=7 mm
@   2 MHz; V(q=0.4) =     80 V; D =     8 eV
@ 20 MHz; V(q=0.4) = 8000 V; D = 800 eV



EURISOL UG Workshop
Firenze, Italy, January 2008 O. Gianfrancesco, Ph.D. thesis, McGill University (2005)

Radiofrequency:  10 kV beyond 10 MHz
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Trap and accumulates ions – typically 100 - 500 ms

Reduces energy spread of ion beam (100eV → 1eV)

Improves emittance of ion beam

Releases ions in a 10 µs bunch

Cooling and bunching for collinear laser spectroscopy

A. Nieminen et al., Phys. Rev. Lett. 88 (2002) 094801 
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Zr per sec88~8000
(327nm)

5.25 hours @

Before

Zr per sec88~2000
(310nm)

48 mins @

After

A. Nieminen et al., Nucl. Instr. Meth. A 469 (2001) 244
A. Nieminen et al., Phys. Rev. Lett. 88 (2002) 094801
J. Äystö and A. Jokinen, J. of Phys. B 36; At. Mol. and Opt. Phys. (2003) 573

Impact on the sensitivity of collinear laser spectroscopy of Zr

Collinear laser spectroscopy with bunched beams
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Preparation for collinear laser 
spectroscopy: Optical transition 
with more components or 
stronger transition

Road to polarization in the 
cooler

Optical pumping in the ion cooler
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What ?

from singly charged to multiply 
charged ions

“ 1+ → n+ ”

In principle
electron impact stepwise ionization

In practice

ECRIS
electron cyclotron resonance ion source

EBIS
electron beam ion source

Why ?

Low-E experiments with n+

Cost effective post-acceleration

 
cyclotron:  E = K 

q2

A

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ E = q V

requirements

1) high enough electron energy

2) suitable combination of:
• ionization time (→ confinement)
• high electron density
• good vacuum

Charge state breeding: basics



EURISOL UG Workshop
Firenze, Italy, January 2008

ECRIS EBIS/T
Single charge state 
breeding efficiencies

< 20% <30%
<70% in principle

Beam purity Support gas and rest gas
In between peaks 
~0.5-10 nA

Rest gas peaks 10-100 pA;
In between peaks <<<1 pA
(not detectable)

Beam particle rate 
limitations

> 1e12/s <1e9/s with pre-bunching
<1e11/s with continuous injection

Breeding times 50 ms 10 ms
Typical A/q A/Q >5-6 A/Q > 2.6

Operation mode Continuous Pulsed

Breakup of molecules Possible Possible
Energy spread of ions negligible Up to 0.5% for high current devices

Ion beam acceptance Large Small

Complementary devices !!Complementary devices !!

EURISOL: Comparison EBIS v. ECRIS

O. Kester, GSI
P. Delahaye, CERN
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Summary

• Motivation for beam manipulation:
– Request from experimentalists Ion beam produced
– Cost-effectiveness of post-acceleration

• Parameters to be optimized:
– Composition of the beam (contaminansts, isobaric/isomeric purity)
– Time structure (DC vs pulsed/bunched, width of the bunch)
– Energy spread
– Transverse emittance
– Ionic properties (charge state, polarization, atomic state)

• Progress during recent years:
– Innovation of ion coolers and bunchers success story
– Progress in charge breeding both in ECR and EBIS
– EXOTRAPS, NIPNET, LASER, TRAPSPEC, CHARGE BREEDING, …

• Challenges:
– High intensities radiation problems, space charge problems, radiation safety problems
– Effciency, (losses):

• Low-energy nbeam transport and high-resolution separation, in practise 100 %
• Ion coolers and bunchers: 80 % reachable, reduced efficiency for light masses ( H buffer gas ?)
• Single charge state efficiencu still low, except for some favorable cases
• Delay time losses for very short-lived isotopes
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Thank you for your attention !

After production target Measurement,
or post-accel.

products of interest

fil
te

r
primary beam

other products
Ion (beam) manipulation

Beam
preparation

=     Purification +   Manipulation
Sub-Task 1                       Sub-Tasks 2 and 3

CERN – JYFL – LMU – MSL – INFN – CSNSM - LPSCAri Jokinen


