

Overview of the EURISOL post-accelerator design and studies

Patrick BERTRAND

On behalf of the TASK 6 team

First EURISOL User Group Workshop January 2008, Firenze

Task 6 Team : EURISOL Post Accelerator

TASK LEADER : Marie-Hélène Moscatello (GANIL, France)

- RFQ : A. Bechhold O. Zimmermann G. Bisoffi P.A. Posocco A. Palmieri A. Pisent
- Fast chopper :M. Di Giacomo(GANIL, France)G. Le Dem(GANIL, France) (Post-doc 100%)
- MEBT & LINAC : P. Bertrand J.L Biarrotte G. Normand

(GANIL, France) (IPN/Orsay,France) (GANIL, France) (Post-doc 100%)

(Frankfurt University, Germany)

(Frankfurt University, Germany)

(LNL Legnaro, Italy)

(LNL Legnaro, Italy)

(LNL Legnaro, Italy)

(LNL Legnaro, Italy)

SUMMARY

- 1. Experimental requirements
- 2. General layout of the Post Accelerator
- 3. LEBT (Low Energy Beam Line)
- 4. RFQ (Radio Frequency Quadrupole)
- 5. MEBT (Medium Energy Beam Line)
- 6. LINAC
- 7. Safety Aspects
- 8. Conclusion

(from Task 10 , N. Orr , April 2006)

<u>1. Maximum beam Energy</u>

- 150 MeV/u for the benchmak 132Sn
- if technically feasible, avoid stripping

2. Minimum beam Energy

 beams of energies below 0.7 MeV/u required , but not within the remit of task 6 (→ task 10)

3. Energy Variability

- finest possible change in energy should be possible
- < 0.5% at energies < 20 MeV/u
- 1 MeV/u at energies > 20 MeV/u

4. Beam Energy Definition

- absolute value better than 0.1% (related to task 6 and task 10 work...)

(from Task 10, N. Orr, April 2006)

- 5. Time Resolution
 - Time width (FWHM) : 0.5 ns (1 nsec acceptable)
 - 100 psec possible ?

6. Beam Time Structure

- 88 Mhz (dt=12 ns) is too high for many experiments...
- separation between pulses of 100-200 nsec required !
- Chopping the beam between 10 nsec 1 msec required

7. Beam Sharing

 strongly recommended to consider 2 acceleretors, fed by a different target-ion source station : (1-5 MeV/u and 5-150 MeV/u)

8. Stable beam operation

- Operation of the post accelerator with stable beams also requested

9. Beam Purity

- Single isotope beams are required (->beam preparation task)

10. Beam Emittance and Spot Size

- no exact numbers agreed on ... but :
- emittance of 1-2 pi.mm.mrad
- 1-2 mm**2 spot size

Principle:LEBTfrom and with task 9: beam preparationRFQ(s)Normal temperature or/and super conductingMEBTwith challenging fast-ChopperSC LINACwith independently-phased superconducting RF cavities

Why a SC LINAC ? - Excellent efficiency

- High transverse acceptance (low beam losses)
- High β-profile flexibility:
 (wide range of Q/A ion can be accelerated)

3 independant post-accelerators:

- very low energy (not studied here)
- low energy (1–5 MeV/u)

- high energy 5 – 150 MeV/u for 132Sn25+

General layout of EURISOL

Low Energy Beam Line transfer : LEBT

(from Task 9 : P. Delahaye June 2007)

Low Energy Beam Line transfer : LEBT

(from Task 9 : P. Delahaye et al. 10th January 2008 (draft version))

Low Energy Beam Line transfer : LEBT

(from Task 9 : P. Delahaye et al. 10th January 2008 (draft version))

Third hypothesis : RFQ on HV platform (P. Ostroumov, PAC 2001)

- . MAFF RFQ Injector under testing at the MAFF test stand
- . New NC RFQs for EURISOL under design, based on the MAFF technology

length	3 m
frequency	104 MHz
m/q	≤ 6.3
Voltage	≤ 60 kV (9.5 kV *m/q)
Q-value	5750
Shunt impedance	168 kΩ*m
W _{in}	2.5 keV/u
W _{out}	300 keV/u

•The superconducting RFQs in LNL are now in operation on the PIAVE injector

• EURISOL NC/SC RFQs under design.

PIAVE

LNL PIAVE RFQ

Transverse emittance measurement			
Energy at the end of PIAVE	ε _{norm} x RMS (mm.mrad)	ε _{norm} y RMS (mm.mrad)	
0.58 MeV / u	0.100	0.103	
1.2 MeV / u	0.200	0.125	

Normal conducting EURISOL RFQ 1 (P.A. Posocco, Legnaro, 7th January 2008)

Frequency	88 MHz
Ion m/q	7
Input energy	5 keV/u
Output energy	88 keV/u
Max suf. E Field	~18 MV/m (1.8 Kilpat.)
В	7.2
Length	~3m

Emittances (100k particles, 100% transm.)				
t. norm. RMS (mm mrad)		longitudinal RMS		
in	out	MeV Deg mm m		
0.100	0.100	0.065	0.094	
0.150	0.151	0.068	0.098	
0.200	0.201	0.072	0.104	

Super conducting Eurisol RFQ 2 (P.A. Posocco, Legnaro, 7th January 2008)

Frequency	88 MHz
Ion m/q	7
Input energy	88 keV/u
Output energy	560 keV/u
Max suf. E Field	~25 MV/m
В	4.5
Length	~2m

Emittances (100k particles)				
t. norm	growth	transm	with an	
(mm mrad)				
0.100	1%	100%	distribution,	
0.150	2%	100%	$\Delta \phi = 15^{\circ}$	
0.200	4%	99.6%	$\Delta E=0.03 MeV$	

8.8 Mhz Buncher + NC RFQ + SC RFQ principle (*P.A. Posocco, Legnaro, 7th January 2008*)

Performances of the NC RFQ with bunched beam

(P.A. Posocco, Legnaro, 7th January 2008)

The buncher 8.8 Mhz will generate energy dispersion... what happens in RFQ1 ?

Functions :

- to transport the bunched beam from the exit of the 2nd RFQ to the entrance of the LINAC with appropriate transverse and longitudinal matching.

- to permit fast-chopping of bunches

- to stop deviated bunches.

Devices needed along the MEBT:

- Transverse focusing elements	:	7 quadrupoles
- Longitudinal focusing elements	:	2 rebunchers
- Deviator	:	1 fast chopper
- Deviated beam stop	:	1 beam stop
- Diagnostics, pumps		

- example of a completely designed MEBT : SPIRAL2

Figure 33 : Répartition des diagnostics le long du B.T.I

Eurisol Post-accelerator/MEBT '

(G. Normand, GANIL)

Eurisol Post-accelerator/MEBT

(G. Normand, GANIL)

Eurisol Post-accelerator : MEBT/CHOPPER

(G. Ledem , M. Di Giacomo , GANIL)

Physicists requirements	Chopper specifications
Suppressed bunches > 90 % Max. bunches rate after chopper : 1/10	Rise/fall times : 6 ns Angle deflection : 11 mrad Max. high voltage (HV) : 2.5 kV

Bunch repetition rate	1/10	1/100	1/1000	1/10000
Chopping pulse frequency (1/T)	8.8 MHz	880 kHz	88 kHz	8.8 kHz

N suppressed bunches

Eurisol Post-accelerator : MEBT/CHOPPER

(G. Ledem , M. Di Giacomo , GANIL)

Solution 1 : Travelling-wave chopper

Description :

- > Association of a static B-field steerer and a 100- Ω stripline :
- Beam always deflected by the B-field,
- HV pulse in the stripline allows one bunch to pass
 - \Rightarrow Duty cycle < 10 % (instead of > 90 % !),
 - \Rightarrow Power consumption < 5 kW,
 - \Rightarrow Power losses < 600 W per plates,
- No pulse, no beam in the LINAC.

Limitations :

- Coverage Factor < 75 %,</p>
- Max. power dissipation per ceramic plate electrode : 600 W ?
- Stability of the high voltage ?
- Attenuation & overshoot of the pulse along its propagation (effects on the deflection ?),
- Effect of the E- and B-field superposition on the beam emittance ?

Status : under development.

Eurisol Post-accelerator : MEBT/CHOPPER

(G. Ledem , M. Di Giacomo , GANIL)

Solution 2 : C-type chopper

Description :

Electrode divided in small plates driven by fast switchers.

Limitations :

Present max. power dissipation into commercial switches : around 1kW (water cooled),

> Effective total capacitance (plates, connections, switch) \approx 70 pF,

Many feedthroughs (vacuum ?), one switch per plate

Max repetition rate of switches < 1 MHz @ 2.5 kV</p>

(10 MHz needed)

 \succ No pulse, all the beam in the LINAC.

Status : under study.

Perspective

- Full beam dynamic studies,
- > Development & test of a Travelling Wave 100- Ω stripline,
- Tests of pulse generators.

Solution 1 (TW) : Emittance growth sources due to chopper

And now , the LINAC...

Optimisation of linac structure using Genlin code (Saclay)

¹³² Sn ²⁵⁺	Section 1	Section 2	Section 3	Section 4	TOTAL
Cavity Freq.	88.05 MHz	88.05 MHz	176.1 MHz	264.15 MHz	-
Cavity β	0.065	0.14	0.27	0.385	-
# cav./ cryo	1 QWR	3 QWR	8 HWR	14 SPOKE	-
# cavities	15 cav	27 cav	80 cav	154 cav	276 cav
Length	17.9 m	26.1 m	59.0 m	103.8 m	206.8 m
Ouput energy range	-	2.1 – 19.9 MeV/A	9.3 – 62.5 MeV/A	20.0 – 150.0 MeV/A	2.1 – 150.0 MeV/A

Linac Design (J. Biarrotte, G. Normand...)

TTF = Transit Time Factor

Linac Design (J. Biarrotte, G. Normand...)

Normalised Emittances

- The design is able to accept I = 1 mA (margin if prebuncher 8.8 Mhz...)
- Calculations with 3D electromagnetic maps
- Huge number of particles

Florence Meeting January 2008

Steering effect with steerers correction

Simulations results

π.mm.mrad	٤ _x	٤γ	٤ _z
Entrance	0.125	0.117	0.058
Exit B = 0	0.126	0.120	0.060
Exit full Steering	0.126	0.164	0.070
Exit steering and correction	0.126	0.143	0.060

Steering effect can be corrected with steerers incorported to warm quads The y emittance growth is ~ 20 %.

Linac Design

(G. Normand...)

Stripping studies

Stripping by using thin foil of carbon generates:

- a lower intensity (about 40% of nominal one)
- a bigger emittance
- safety issues.

- positive point: better acceleration for the same LINAC or a shorter LINAC length for the same energy...

QWR 0.065	QWR 0.14	HWR 0.27	SPOKE 0.385
Section1	Section 2	Section 3	Section 4
N _q =1	Stripper 1 and matching section N _q ~10 1<1		<~4 if multicharge beam transport

- Length reduction with 2 stripper stations : 206m \rightarrow 138+20 = 158m
- Length reduction with 1 stripper station : $206m \rightarrow 146+10 = 156m$
- For 132Sn: stripper <Q>= 47, Q Dispersion= $\sigma = 1$
- Fluctuation of foil thickness... (Ostroumov et al. Phys.Rev.STAB vol.7 090101 (2004))

Stripping option : Emittance growth (Preliminary)

Transverse impact

Longitudinal impact

\rightarrow Emittance growth due stripping seems not to be a problem

Decision : - LINAC 150 MeV/A for SN 132 25+ - 1 optional stripper for heavier masses.

SAFETY ASPECTS

Schematic view of the 2 options post-accelerator

Conclusions ...

- 1- Beam dynamics of the LINAC is studied. Good matching between MEBT and LINAC has been obtained
- 2- Steering effect not negligible, but can be corrected (as for SPIRAL 2)
- 3- Physics requirements reachable. (remark: for low energy output (5 MeV) $\Delta E/E = \pm 0.2\%$ (instead of $\pm 0.1\%$)
- 4- Stripping option investigated, partial conclusions are :
 - One stripper at around 21.3 MeV/u OK,
 - Length of the LINAC is 25 % smaller than without stripper
 - But 60% decrease intensity (one charge kept, multicharge not obvious)
 - Best solution : keep 132 Sn 25+ at 150 Mev/A without stripper
- 5- Collaboration well started with the safety group, some results are available

... and perspectives

- 6 LEBT : We have to choose between the 3 hypothesis...
- 7 RFQs : Comparison between NC-NC and NC-SC RFQs... Optimization of the matching section between RFQs
- 8 MEBT : Study rebunchers in more detail Choice of chopper type
- 9 LINAC : Study section for intermediate energy output and stripper
- **10 END TO END : Errors studies (dynamic and static) and refine safety**

Thank you !

(Grazie !)