

The laser ion source as a tool for physics at Eurisol

Resonant laser ionisation

Isomeric beams

In-source spectroscopy

Doppler free two photon resonance

Search for the Giant Pairing Vibration at Eurisol

Serge Franchoo IPN Orsay franchoo@ipno.in2p3.fr

Resonant laser ionisation

V. Fedoseyev et al., HI 127 409 (2000)

management of radioactive inventory

Elements available at Isolde Rilis

Elements available at Lisol laser ion guide

Ionisation scheme tested

		-					00.				,						
3	4			-								5	6	7	8	9	10
Li	Be		B C N O F Ne														
11	12		13 14 15 16 17 18													18	
Na	Mg											AI	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

large range of extracted beams

U. Köster et al., NIM B 204 347 (2003) V. Fedosseev et al., NIM B 204 353 (2003) K. Wendt, NIM B204 325 (2003)

He

Petersburg NPI:

¹⁵⁵Yb, ¹⁵³⁻¹⁵⁴Tm **1-1.7** GHz bandwidth dye laser (total linewidth 2.5-3 GHz)

G. Alkhazov et al., NIM B69 517 (1992) A. Barzakh et al., PRC 61 034304 (2000)

Isolde:

- ^{7...14}Be, ^{122...129}Ag
- 12 GHz bandwidth dye laser
- V. Sebastian et al., Enam-2 126 (1998)
- V. Fedoseyev et al., HI 127 409 (2000)
- U. Köster et al., HI 127 417 (2000)

^{68,70}Cu

1.2 GHz bandwidth dye laser at 11 kHz repetition rate Doppler broadening = **3.8** GHz

L Weissman et al, PRC 65 024315 (2002)

In-source spectroscopy

J. Van Roosbroeck et al., PRL 92 112501 (2004) Isoltrap

G. Bollen, K. Blaum, H.-J. Kluge et al.

ISOLDE

CERN

powerful technique to disentangle isomers!

Offshoot:

isomeric beams for postacceleration

Coulex of odd-odd ^{68,70m}Cu at Rex-Isolde 2.83 MeV/n Cu + 2.3 mg/cm² ¹²⁰Sn

At Miniball 3 10^5 pps ${}^{68}Cu(6-)$ 86(3)% 5 10^4 pps ${}^{70}Cu(6-)$ 85(5)% ${}^{70}Cu(3-, 1+)$ each 7%

I Stefanescu, G Georgiev et al, PRL98, 122701 (2007)

transfer on isomeric beams: HIE Isolde, Spiral 2, Eurisol

 $\delta v^{AA'} = (A'-A)/AA' (N+S) + F k \delta < r^2 > ^{AA'}$ F(Pb,283 nm) = 20.26(18) GHz/fm², k=0.93

$$\Delta v_{B} = 1.2 \text{ GHz}, \Delta v_{D} = 2 \text{ GHz}$$

25 Energy (MeV) 35

\$_000(y+30)

P2 457 (7+30) 4

T. Cocolios, Isolde Workshop December 2007

Electronic F factors of selected transitions in GHz/fm²

E. Otten, Treatise on Heavy Ion Science, vol. 8 p. 517 (1989)

$$\mathsf{F} = \frac{\pi a_0^3}{Z} \Delta |\psi(0)|^2 \mathsf{f}(z)$$

11	Na		-0.047	63	Eu	ss-sp	-6.55
19	K		-0.128	66	Dy	421	-7.26
37	Rb	780	-0.650	67	Но	592	-8.41
38	Sr	407	-1.582(49)	68	Er	583	-8.08
47	Ag	547	-12.070(966)	69	Tm	597	-10.3
48	Cd	326	3.91(46)	70	Yb	555	-11.8
49	In		2.070(10)	78	Pt	266	-28
50	Sn	286	3.3(5)	79	Au	268	-43.07
54	Xe	823	-2.32	80	Hg	254	-55.36
55	Cs	852	-2.313	82	Pb	283	20.26(18)
56	Ba	455	-5.120	86	Rn	745	-22.1
60	Nd	588	-5.50	88	Ra	468	-49.6
62	Sm	600	-5.5				

large F factors for heavy elements only!

Limitations

- laser band width
 1.2 GHz at Isolde
 600 MHz with seeding
- power broadening

 $\Delta v_{Power} = \Omega_{Rabi} / \pi = 10^7 I^{1/2} [Hz (cm^2/W)^{1/2}]$ 1 MHz for 1 W/mm²

pressure broadening

 $\Delta v_{Pressure} = 10^{-3} P [cm^{-1}/mbar]$ negligible unless gas cell

Doppler broadening

 $\Delta v_{\text{Doppler}} = 7.16 \times 10^{-7} v_0 (T/M)^{1/2} [cm^{-1} (amu/K)^{1/2}]$ 2 GHz for Cu at Isolde (2300 K)

> Y. Kudryavtsev et al., NIM B 114 350 (1996) V. Fedoseyev et al., NIM B 204 353 (2003)

development of laser cavities at low temperature !

hv = hv/2 + hv/2**Doppler free**

G Ewald et al, PRL94, 039901 (2005) W Nörtershäuser et al, HI 162, 93 (2005) & EPJA 25 S1, 199 (2005)

 7 Li

⁸Li

⁹Li-

6500

1785

Ш

Er.

1830

.

S

6000

+ 108 MHz

98 MHz

1770

1820

Two photon laser spectoscopy in the ion source!

conventional laser ion source

G Huber, H Ravn's 60th birthday symposium & January 2006 LOI at Alto

cavity with metal mirrors

90° extraction

GPV: iThemba

stable probe: ²⁰⁸Pb(p,t)²⁰⁶Pb at iThemba

Q= -5.62 MeV intensity 10-15 nA = 10^{11} pps

GPV L=0 pairing mode spectrometer at 7° but no GPV seen

2008: modification for 0° mode

E. Khan, B. Mouginot IPN Orsay

R. Neveling iThemba

GPV: iThemba

no GPV seen (yet) since not at 0°

for hear.

⁶He radioactive probe

better energy matching: large Q value +8.15 MeV

RPA+DWBA: 1 mb cross section cross section (⁶He,⁴He) probe high if dineutron configuration really exists!

L Fortunato et al, EPJA 14, 37 (2002)

radioactive probe: ²⁰⁸Pb(⁶He,⁴He)²¹⁰Pb at Ganil 10⁶-10⁷ pps ⁶He at 20 MeV/u + 10 mg/cm² ²⁰⁸Pb

No GPV seen...

Laser ion source

production of RIB management of radioactive inventory

Isomeric beams Lasers at Eurisol for In Source spectroscopy sensitivity of 10 atoms/s at resonance Doppler free two photon spectroscopy modify design of laser ion source

Giant pairing vibration

searched for since thirty years better energy matching with radioactive probe Eurisol intensity x 10^6

