Light ions beyond the dripline Haik Simon • Gesellschaft für Schwerionenforschung / Darmstadt

Outline

- introduction
- reactions
- halo nuclei
- unbound systems
- summary

Light ions: the lower part of the chart of nuclei

http://www.nndc.bnl.gov/chart/

Typical Intensities @ GSI

Systematics: intruder states (here N = 7)

Shell reordering: Halo formation

Mean-field h

surface composed of diffuse neutron matter

derivative of mean field potential weaker and spin-orbit interaction reduced

Nucleon-nucleon interaction

σσττ interaction :

- coupling of p-n spin-orbit partners in partly occupied orbits
- \rightarrow new magic numbers 6, 16, 34 ...

T.Otsuka et al., Phys.Rev.Lett.87 (2001) 082502 Z=14 \rightarrow Z=8: Removing $Od_{5/2}$ protons

 $\rightarrow\,$ less binding for $\mathrm{Od}_{_{3/2}}\,\mathrm{neutrons}$

Spectroscopic factors: knockout vs. (e,e'p)

Starting Point: Neutron Momentum Distributions

¹¹Be + C \rightarrow n + ^ZA + X

Experimental approach

Particle continuum spectroscopy and missing momentum analysis (at relativistic energies: 0.2-0.3 GeV/u)

- clean production and detection
- relative energy measurement
- J^{π} assignment

Challenges

- low statistics
- reaction mechanism vs. structure (breakup reactions)
- detection issues

Experimental Setup (kinematically complete)

Experimental Setup (less schematic)

Recoil proton detection !

First attempt for an ALADiN/LAND experiment 2001...

Two-body final state from 3-body system (2n-Halo Nucleus)

Toolbox:

Momentum of the knocked out neutron ? (groundstate property)

 \rightarrow missing momentum

CMS: $\mathbf{p}_{m} = -\mathbf{p}_{n2} = \mathbf{p}_{n1} + \mathbf{p}_{f}$

Spectroscopy of intermediate system

 \rightarrow relative energy from relative momentum

CMS: $\mathbf{p}_{fn} = \mu/m_n \, \mathbf{p}_n - \mu/m_f \, \mathbf{p}_f$

 $E_{fn} = p_{fn}^2 / 2\mu$

... or invariant mass via Mandelstam s

¹¹Li : Missing momentum distribution $p_m = (p_f + p_n)$

$$Y_{lm}(\mathbf{r}) \propto k^{3/2} h_l(Ikr) Y_{lm}(\theta, \phi)$$

 $k = (2 \mu S_n)^{-1/2}$
from ¹⁰Li relative energy
spectrum

core survival ↔ cylindrical cut
 P.G. Hansen Phys.Rev.Lett.77(1996)1016

Result: strong sensitivity / ¹¹Li g.s. configuration

> s, p, (d) components partial cross sections spectroscopic factors

¹¹Li \rightarrow ¹⁰Li: Relative energy spectrum

• steep rise at threshold $\rightarrow l = 0$

-30 ⁺¹²₋₃₁ fm; virt. 0.51(44); 0.54(16) Ε*; Γ 1.49(88); < 2.2 in MeV

- confirmed by ang. correlations (-22.4(4.8) fm / 0.566(14) MeV IH₂ target)
- correlated events ?

$R = d\sigma/dE / d\sigma/dE_{mix}$

• spin assignment ?

2n-Halo : n-n angular correlations

p_m p_{fn} $\cos(\theta)_{\text{fn}} =$

¹¹Li \rightarrow ¹⁰Li: combining bits and pieces

 ${\rm d}\sigma/{\rm d}\Omega \propto {\rm A} + {\rm B}\cos\theta_{\rm fn} + {\rm C}\cos^2\theta_{\rm fn}$

Conclusion: ¹⁰Li

consistent description of observed

- momentum distribution →angular momenta
- 2. energy spectra
 → position states
- angular correlations
 → sequence of states

Application LASER spectroscopy: charge radii Li isotopes

To calculate the charge radie of "He or "hi we need to know the charge radius of the cores "He and "hi (rek) and the distances of the cores (SRc) from the center of mass of the corresponding nuclei ("He, "Li) 2ch (core + 2n) = [2ch (core) + (AR,)27 12 (6He) Teh (4He) = 1.673 (known for many years back) $\Delta R_{e}(^{4}He) \quad we \quad can \ take from exp. paper [T. Animann., PRC <u>58</u>(1333)1252] where$ this number has been obtained from cluster non energy weighted sum rule $<math display="block">S_{clus.}^{NEW} = \frac{3}{4\pi} Z_{e}^{2} e^{2} (\Delta R_{e}(^{4}He))^{2} \iff \Delta R_{e}^{-(\frac{4}{4}He)} = 1.12 \pm 0.13 \text{ or theor, calculations}$ [B.V. Danilin... NPA 632 (1998)383] ~ A Re("He) = 1.2 2 ef (6He) = 1,944 ÷ 2,088 fm 2ch (6He) = 2,059 fm ("Li) ref (3 Li) = 2.24 ± 0.04 [G. Eward..., PRL 94 (2005) 033901] # A Re (3 bi) is not known Texperimentally. From theor, paper [Ch. Forssen ... NPA (2002) 48] we can get two values: DR. (34i)= 1.08 or ARe"("4i) = 0.8, depending on correlations in "Lie WF (unknown from exp.) 2th ("Li) = 2,43± ... fm or 2th ("Li) = 2,38± ... fm

¹¹Li: Mass, magnetic moment !

N. Shulgina et al. to be published

halo neutrons coupled to J=0(94%), J=1,2(6%)
 just 3 harmonics K=0,2

T: K=2 lx,ly=1,1 S=1 0,0 0 T: K=0 0,0 0

- core inert !
- trying to describe existing data ! radius, binding energy and quadrupole moment, using correlations

Result (consistent description):

- binding energy 376 keV (369.15(65) keV)
- charge radius 2.42 fm (2.46(4) fm)
- quadrupole moment 32.8(4) mb (33.3 (5) mb)

45

40

11

cluste

p-sð

MD

NCSM

12

R. Neugart et al.

Unbound Helium isotopes: ⁷He target dependence

 8 He + p \rightarrow 6 He + n + X

Unbound Helium isotopes: ⁷He target dependence

Carbon Data

Three-body Continuum Spectroscopy: prerequisites

- compute relative energy of all particles emerging from target
- large detection efficiency (charged particles, neutrons)
- sufficiently high resolution

Unbound Lithium isotopes: ¹²Li

Unbound Lithium isotopes

¹⁴Be + p \rightarrow ¹¹Li + n + n

Y. Aksyutina, H. Johansson et al., Phys. Lett. B666 (2008) 430

Summary

 Consistent interpretation for the ¹¹Li halo nucleus via ¹⁰Li intermediate system (cross link to other fields)

 does not mean there's no debate

full tool box available \rightarrow correlations !

Heavy He isotope sequence studied
 interpretation (see next talk)

Physics Letters B 666 (2008) 430-434

(Super) Heavy Linisotope sequence studied
→ ^{12,13}Li observed for the first time

www.elsevier.com/locate/physletb

At the horizon: R³B, EXL, ELISe /NUSTAR /FAIR

New Experiments (Aug2007 ¹⁷Ne, Sep/Oct 2007 ¹²C QFS, ...) R³B precursor: Setup at Cave C

The S135/S245 collaboration

Y. Aksyutina, T. Aumann, H. Álvarez-Pol, T. LeBleis, E. Benjamim, J. Benlliure, M.J.G. Borge, M.Caamaño, E. Casarejos, L.V. Chulkov, D. Cortina-Gil, K. Epinger, Th. W. Elze,
H. Emling, C. Forssén, H. Geissel, R. Gernhäuser, A. Grünschloß, M. Hellström, J. Holeczek, K.L. Jones, H. Johansson, B. Jonson, J.V. Kratz, R. Krücken, R. Kulessa, M. Lantz,
Y. Leifels, A. Lindahl, K. Mahata, M. Meister, P. Maierbeck, K. Markenroth, G. Münzenberg, T. Nilsson, C. Nociforo, G. Nyman, R. Palit, M. Pantea, S. Paschalis, D.Pérez, M. Pfützner, V. Pribora, A. Prochazka, R. Reifarth, A. Richter, K. Riisager, C. Rodríguez, C. Scheidenberger, G. Schrieder, H. Simon, J. Stroth, K. Sümmerer, O. Tengblad, H. Weick, and M.V. Zhukov.

GSI, Darmstadt, Germany; Instito Extructura de la Materia, Madrid, Spain Kurchatov Institute Moscow Russia; Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany; Chalmers Tekniska Hogskola / Gereborgs Universitet, Göteborg, Swedens Johannes-Gutenberg-Universität, Mainz, Germany, Universitet angiellonski, Kraktiv Poland; University Santiago de Compostela, Spain; Technische Universität, Darmstadt, Germany; Technische Universität, München, Germany; CERN, Genève, Switzerland; Aarhus Universitet, Aarhus, Denmark

Experimental Setup (less schematic, today)

