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Which problem do we want to solve?

Initial state is prepared in an experiment

The oberservables are three particles emerging in a final state
measured accurately and kinematically complete

What can we say about the initial state and/or the process?

For two particles in the final state (like �-emission),
energy and momentum conservation determine the final state energy

For three particles in the final state, the energy and momentum
distributions are continuous, similar to beta-decay
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What are the difficulties?

The many-body problem at small distances
contracts to a three-body problem at large distance

Both small and large distances are crucial

Decay process and hence a continuum problem

Both Coulomb + short-range interactions are important

The asymptotic large-distance behavior can vary as:
individual two-body, coherent two-body,
three-body structures, mixing of these

Comparison to measurements is difficult sinceR-matrix analysis derives “observed” values, not observables
ex. sequential decay branching ratios and “simulated”
momentum distributions filtered through experimental parameters
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Formulation and Method

Set up amodel to compute momentum distributions of decay fragments

Assume population of resonance state, in reaction or beta decay,
independent of previous history (not necessary but simplification)

Compute three-body resonance wavefunction in coordinate space,
Fourier transform to get observable momentum distributions

Accurate large-distance coordinate space properties are crucial

Three-body method of adiabatic hyperspherical expansion is used

Complex scaling facilitates the large-distance boundary condition
and provides distinction between sequential and direct decay
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Hamiltonian(�iTi � T
m +�i<kVik + V3b)	 = E	 where fi; kg 2 f1; 2; 3g

Coordinates:rik = rk � ri is the vector connecting particle i and k

(x;y) are mass scaled Jacobi coordinatesx2 = r2ik mimkm(mi+mk) , y2 = r2j;ik mj(mi+mk)m(mi+mk+mj)�2 = x2 + y2 = 1m(mi+mk+mj) Pi<j mimjr2ij
 = f
x;
y; �g are directions of (x;y) and tan� = xy
Complex scaling: �! � exp(i�)
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Procedure

Choose interactions, solve Faddeev equations for each �

Obtain angular eigenvalues �n and eigenfunctions f�n(�;
)g

Three-body resonance state 	 is given by the Faddeev decomposition	(x;y) = 	(�;
) =Pn fn(�)�n(�;
) =Pn fn(�) �(n)12 (�;
) + �(n)13 (�;
) + �(n)23 (�;
)!

The Fourier transform ~	 of the coordinate space resonance
wavefunction 	 has the same angular dependence as 	

The �-dependence is exchanged with a Breit-Wigner shape:	(�max;
k)�2��20 , �0 is related to the resonance energy, 
k = f
kx;
ky; �kg

Observables are found by absolute square and integration
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Crucial Ingredients

Faddeev decomposition

Large hyperharmonic basis for each Faddeev component �(n)ik (�;
)

Accurate large-distances:
outgoing waves of radial wavefunctions fn

Three-body resonance tuned by use of the three-body potential V3b

The small-distance boundary condition defined in three-body space

Many-body degrees of freedom contract to three particles at the surface

For �-emission two fragments appear outside the core

Here three-body structure outside the core nucleus



8

Sequential and/or Direct Decay

Two different decay mechanisms connecting initial and final states

This “decay path” is not a quantum mechanical observable

Distinction is only possible in special limits

Basis for Sequential Decay:
Two-body basis 
 third particle in the continuum

Basis for Direct Decay: Three-body continuum wavefunctions

Observables can be described in any complete basis set

One may be better suited
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Figure 1: The 10 real and imaginary angular eigenvalues as function
of � for 0+ for three bosons interacting by d-waves. The two-body
systems have a d-resonance at 4.53 MeV with a width of 2.36 MeV
(�R = 0:127). The red curves are the real and imaginary parts of the
parabola 2mjEj�2 exp(2i(� � �R))=~2. The complex scaling angle � = 0:4.
“Red” resonance population decreases at crossings vanishing for large �
Direct and sequential means: nothing or everything is on this potential
Gradual change, artificial, basis choice
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Figure 3: The real part of the lowest angular eigenvalues for the 9Be(5=2�)-
resonance. The thick and thin dashed parabolic curves are the asymptotics
corresponding to the lowest (0+,2+) and (p3=2,p1=2) resonances for 8Be and5He, respectively.
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Figure 4: The lowest real potentials, including the three-body potential, for
the 9Be(5=2�)-resonance as function of hyperradius.

The lowest has a pocket holding the resonance at the measured exci-
tation energy of 2.429 MeV or 0.856 MeV above the three-particle breakup
threshold.
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Figure 8: The partial wave decomposition in the two Jacobi coordinates of
the first adiabatic potential for the 9Be(5=2�)-resonance.
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Figure 9: The partial wave decomposition in the two Jacobi coordinates of
the second adiabatic potential for the 9Be(5=2�)-resonance.
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Figure 10: The partial wave decomposition in the two Jacobi coordinates of
the seventh adiabatic potential for the 9Be(5=2�)-resonance.
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Figure 12: The measured [20] (P. Papka et al.) energy spectra of the emitted
neutron and �-particles.
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Figure 13: The measured [20] (P. Papka et al.) relative energy distributions
of the two �-particles as function of the angle �1 between the ���momen-
tum and the momentum of the emitted neutron.



22

0 1 2 3
θ

1
 (rad)

0

1e-09

2e-09

3e-09

4e-09

5e-09
pr

ob
. (

a.
u.

)
Eαα  = 0.5 MeV

Figure 14: The computed probability for two �-particles with a relative en-
ergy of 0:5MeV emerging in the direction defined by the angle �1 between
the �� �momentum and the direction of the emitted neutron.
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Figure 15: The computed relative energy distributions of the two �-
particles as function of the angle �1 between the � � � momentum and
direction of the emitted neutron.
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Figure 16: The �� � energy distribution.
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26R-matrix analysis

fx;y / q�y�2r=pEyExE2r � i 12�2r �Ex � 
22 [S`x(Ex)� S`x(E2r)℄

Three-body resonance energy: E3r � i�3r=2

Two-body resonance energy: E2r � i�2r=2

Two-body orbital angular momentum: `x

First emitted particle energy: Ey = E3r �Ex

Barrier penetrability: P`y(E)where �y = 2P`y(E)
2

Reduced width: 
2, and Shift function: S`
With Bose symmetry:

f = Xx;y Xmx`y(`yM �mbjxmxjJM)YM�mb`y (�y;�y)� Y mx`x (�x; �x)fx;y ei(!`y��`y )ei(!`x��`x )
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Figure 18: Single-alpha energy distributions from R-matrix analysis for
decay into three �-particles of the 1+ resonance in 12C at an energy ofE3 = 5:43 MeV and a partial width of about 18 keV. The energies and
widths of the intermediate 2+ resonance in 8Be are varied in the simula-
tions as specified in the panels. The maximum energy E�;max = 2E3=3.
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Figure 19: Single-alpha energy distributions from R-matrix analysis for
decay into three �-particles of the 1+ resonance in 12C at an energy ofE3 = 5:43 MeV and a partial width of about 18 keV. The energies and
widths of the intermediate 2+ resonance in 8Be are varied in the simula-
tions as specified in the panels. The maximum energy E�;max = 2E3=3.
The symmetrization of the wavefunction is omitted.
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Figure 20: Single-alpha energy distributions from R-matrix analysis for
decay into three �-particles of the 2� resonance in 12C at an energy ofE3 = 4:55 MeV. The energies and widths of the intermediate 2+ resonance
in 8Be are given in the panels. The maximum energy E�;max = 2E3=3. The
red (solid) and black (dashed) curves are for, `y = 1; 3, the two relative
angular momenta between the first �-particle and 8Be.
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Figure 21: Single-alpha energy distributions from R-matrix analysis for
decay into three �-particles of the 2� resonance in 12C at an energy ofE3 = 4:55 MeV. The energies and widths of the intermediate 2+ resonance
in 8Be are given in the panels. The red (solid) and black (dashed) curves are
for, `y = 1; 3, the two possible relative angular momenta between the first�-particle and 8Be. The symmetrization of the wavefunction is omitted.
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Figure 22: Single-alpha energy distributions from R-matrix analysis for
decay into three �-particles of the 4� resonance in 12C at an energy ofE3 = 6:08 MeV and a partial width of about 375 keV. The energies and
widths of the intermediate 2+ resonance in 8Be are given in the panels. The
red (solid) and black (dashed) curves are for, `y = 3; 5, the two possible
relative angular momenta between the first �-particle and 8Be.



32

0

1

2

3

4

0

1

2

3

0

1

2

3

P 
( 

E
α/E

α,
m

ax
)

0 0.25 0.5 0.75
0

2

4

6

0 0.25 0.5 0.75
Eα/Eα,max

0 0.25 0.5 0.75 1

l
y
 = 3

l
y
 = 5

E2/E3=0.4

E2/E3=0.4

E2/E3=0.4

E2/E3=0.4

Γ2/E3=0.09

Γ2/E3=0.

Γ2/E3=0.17

Γ2/E3=0.25

E2/E3=0.5

E2/E3=0.5

E2/E3=0.5

E2/E3=0.5

Γ2/E3=0.1

Γ2/E3=0.18

Γ2/E3=0.24

Γ2/E3=0.32

E2/E3=1.2

E2/E3=1.2

E2/E3=1.2

E2/E3=1.2

Γ2/E3=0.17

Γ2/E3=0.23

Γ2/E3=0.3

Γ2/E3=0.44
-

Figure 23: Single-alpha energy distributions from R-matrix analysis for
three �-decay of the 4� resonance in 12C at an energy of E3 = 6:08 MeV
and a width of 375 keV. The energies and widths of the intermediate 2+

resonance in 8Be are given in the panels. The red (solid) and black (dashed)
curves are for, `y = 3; 5, the two relative angular momenta between the first�-particle and 8Be. The symmetrization of the wavefunction is omitted.
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Figure 24: Single-alpha energy distributions from full computation for di-
rect decay into three �-particles of the 1+, 2�, 4� resonances in 12C at the
measured energies of E3 = 5:43; 6:08; 4:55 MeV. These energies are varied
by change of the strength of the three-body potential. The relative energies
and widths of the intermediate 2+ resonance in 8Be are given in the panels.
The full (black) and dashed (red) are for rotation angle � = 0:25 and 0:1.
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Figure 25: Single-alpha energy distributions from R-matrix computation
for decay into three �-particles of the 1+, 2�, 4� resonances in 12C at the
measured energies of E3 = 5:43; 6:08; 4:55 MeV, respectively. The param-
eters shown in the panels are the same as in fig. 24. The full (black) and
dashed (red) are for `y = 1; 3 and `y = 3; 5 respectively for the 2� and 4�
resonances.
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Figure 26: Density structures of the Dalitz plot for sequential decays. The
inscribed circle marks the boundary of the kinematically allowed region.
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Figure 27: Regions of the 3� Dalitz plot where the density must vanish are
shown in black. The vanishing is of higher order where the black lines and
dots overlap. The pattern for a spin J+2n (n = 1; 2; 3; : : : ) is identical to the
pattern for spin J (provided J � 2) except that the vanishing at the center
is not required for spins J � 4.
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Nodes in Dalitz plots

Forced by parity and angular momentum conservation

The momentum distributions are essentially given by:j	(�max;
k)j2 , coordinate wavefunction
k = f
kx;
ky; �kg , momentum coordinates

Unavoidable nodes from parity and angular momentum structure

Also other points of zero probability can be found in j	(�max;
k)j2

They are nodes in the coordinate wavefunction at large distance �max

They may differ from those at small distance due to dynamic evolution
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Figure 29: The computed lowest adiabatic potential as function of hyperra-
dius for a number of resonances of 12C (�+�+�). The horizontal lines mark
the resonance energies measured above the three-body threshold. The cor-
responding excitation energies are given above each of the panels [42].
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Summary and Conclusions

1. Three-body decays; a generalization of �-emission
2. Small distances cover the many-body character
3. Large distances reflect the three-body observables after decay
4. Dynamic evolution of resonance structure from small to large distances
5. Partial decay widths can be estimated;

preformation factor or spectroscopic factors are necessary
6. Direct and sequential, not quantum mechanical distinguishable

R-matrix analyses indicate limits when they are distinguishable
7. Direct is largely determined by Coulomb and centrifugal barriers;

two-body interactions provide the correct small-distance structure
8. Sequential via two-body substructures determined by pair interactions;

widths and momentum distributions depend sensitively
9. Method must describe different substructure;

coherent two-body substructures, a la Efimov
10. Angular momentum and parity, fermion or boson symmetry are crucial
11. Dalitz plots reveal details, experimental and theory comparison
12. 12C, 9Be, 6Be, agree with measurements, Efimov effect in 11Li
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Figure 41: Dalitz plots for the probability of finding an � particle and a pro-
tonwith a given energy (left) or the two protons (right) for the 0+ resonance
of 6Be.
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Figure 42: Dalitz plots for the probability of finding an � particle and a pro-
tonwith a given energy (left) or the two protons (right) for the 2+ resonance
of 6Be.
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Figure 43: The angular distributions of the directions between two particles
and their center of mass and the third particle for the 0+ resonance of 6Be.
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