Light neutron-rich nuclei beyond the dripline by means of transfer reactions

D. Beaumel, IPN Orsay

Unbound Nuclei Workshop – November 2008

Other method: active target

Study of the ⁸He + d system using the (relatively) intense 15 MeV/u SPIRAL beam

Search of ⁷H with the MAYA detector

Study of the ⁸He + d system using the SPIRAL ⁸He beam

⁸He(d, ³He)⁷H

Missing mass measurement :

- \Rightarrow Energy of the states
- ⇒ Bound and resonant states on the same footing

needs good control of

- ✓ Angle determination
- ✓ Energy calibration
- ✓ Energy losses in target, etc ...

Results for ⁷H

after background subtraction singles spectrum 25 40 $^{7}H_{gs}$ ²H(⁸He,³He)⁷H ²H(⁸He,³He)⁷H 35 20 E=15.3 MeV/u E_{inc}=15.3 MeV/u 30 Counts / 0.2 MeV 15 Counts / 0.5 MeV 25 S(t+4n)20 10 15 5 Carbon 10 background 0 5 0 -5 -2 2 6 -4 0 4 -2 -1 2 3 5 6 0 4 7 E_{cm}(MeV) E_{res} (MeV) Fit by Breit-Wigner function E=1.56 ± 0.27 MeV $\Gamma = \Gamma_0 \sqrt{(E/E_r)}$ Γ_0 =1.74 ± 0.72 MeV

⁷H seems to exist as a resonance close to t+4n threshold

- Resonance parameters still ambiguous
- > New riken data coming soon (same reaction at higher energy)

Search for neutron clusters at GANIL/SPIRAL

Reply from theory

Similar conclusions by Timofeyuk (J.Phys.2004) and Lazauskas(PRC2005)

Our alternative approach to B.U. reactions α-transfer reaction ⁸He(d,⁶Li)4n using SPIRAL ⁸He beam

⁸He very neutron rich large Overlap < ⁸He | α ⊗ 4n >

- > (d,⁶Li) well known α−transfer reaction : large Overlap < ⁶Li | ⁴He ⊗ d>
 ⇒ cross section ~ few mb/sr
- ➤ Missing mass measurement :
 - \Rightarrow Energy of the states
 - ⇒ Bound and resonant states on the same footing

DWBA predictions

Collaboration

IPN Orsay :

D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay, <u>S. Fortier</u>, N. Frascaria, S. Galès, L. Gaudefroy, J. Gibelin, J. Guillot, F. Hammache, E. Khan, V. Lima, C. Monrozeau, <u>E. Rich</u>, J.-A. Scarpaci, O.Sorlin, E. Tryggestad

INP Cracow/JINR-Dubna R. Wolski, A.Fomichev, S. Stepantsov

<u>CEA-Saclay</u> A. Gillibert, V. Lapoux, L. Nalpas, A. Obertelli, E. Pollacco, F. Skaza

GANIL M. Gelin, P.Roussel-Chomaz

<u>LNS Catania</u> D. Santonocito

The **INUST2** Array

Collaboration: IPN Orsay, SPhN/Saclay, GANIL

Collaboration: IPNO/SPhN-Saclay/GANIL

MUST2 electronics

6 telescopes configuration for e.g. measurement of (d,t) and (d,d) reactions

Study of ⁹He: parity inversion in N=7 isotones

Study of ⁸He(d,p) with **MUST2**

Evidence obtained with MUST1

see also Golovkov et al, PRC 76 (2007)

Magicity loss at N=8

- Intruder configurations in GS K.O. reactions at GANIL and MSU
- Low lying intruder 1- and 0+
 H.Iwasaki et al, PLB 481(00)7.
 H.Iwasaki et al, PLB 491(00)8.
 S. Shimoura et al, PLB 560(03)31.

Data recently taken

Test experiment @ GANIL: ²²Ne + α at 30 MeV/u

Collaboration: IPNO, Saclay, GANIL

 $^{22}Ne(\alpha, {}^{6}He)^{20}O = 30 MeV/u$ $^{22}Ne(\alpha, ^{6}Be)^{20}O$ $\rightarrow \alpha + p + p$

EX: ${}^{6,8}He(\alpha, {}^{6}Be)4n, 6n; {}^{16}C(\alpha, {}^{6}Be){}^{14}Be; \dots$

Using cryogenic He <u>gas</u> target made for missing mass measurements

