Spectroscopy of Unbound States at the Oxygen Drip-Line

[^0]
Outline

- States in ${ }^{24} \mathrm{O}$ and ${ }^{25} \mathrm{O}$
- Motivation
- Results
- Discussion
- Other MoNA-Sweeper Experiments
- Completed
- Under Analysis

New Mg and Al Isotopes

T. Baumann et al., Nature (London) 449, 1022 (2007)

New Magic Number at $\mathrm{N}=16$

Systematics of S_{n} values for different Isospins

Taken from: Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000)

Search for excited bound states in ${ }^{23,24} \mathrm{O}$

No gamma-rays observed ${ }^{24} \mathrm{O} 2^{+}>\mathrm{S}_{\mathrm{n}}=4.09(10) \mathrm{MeV}$

Taken from: Stanoiu et al., Phys. Rev. C 69, 034312 (2004)

Evolution of Effective Single-Particle Energies

- Tensor Force
- Spin-isospin component
- Migration of $0 \mathrm{~d}_{3 / 2}$

SPEs show $\mathrm{N}=16$ shell gap for $Z=8$

24,25 O Measurement

- Observe the size of the $\mathrm{N}=16$ shell gap
- Measure the ${ }^{25} \mathrm{O}(\mathrm{N}=17)$ ground state and determine $\mathrm{v} 0 \mathrm{~d}_{3 / 2}$ orbital location
- Determine the spherical nature of ${ }^{24} \mathrm{O}$
- Find the location of the lowest excited states and the size of the $\mathrm{N}=16$ shell gap

${ }^{24,25,26} \mathrm{~F}$ Single Proton Knock-Out Reactions

Thoennessen et al., Phys. Rev. C 68, 044318 (2003)

Mass ID

Experimental Setup

The Modular Neutron Array (MoNA)

- ToF Neutron Detector
- 10 X 10 X 200 cm Bar of Plastic Scintillator
- 9 Layers of 16 Stacked Bars
- Time Resolution $<1 \mathrm{~ns}$
- Position Resolution ~ 10 cm
- Detection Efficiency ~ 70 \% for 85 MeV/A Neutrons

Breit-Wigner Single-Level Line-Shape

B.W.~

$$
\overline{\left(E_{\text {decay }}+\Delta-E\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

$$
B=S_{l}\left(E_{\text {decay }}\right)
$$

-Full energy-dependent BW singlelevel equation
-Lacking the shift function

- No energy dependence
${ }^{1}$ A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958)
Calem Hoffman Florida State University PISA Workshop November 5, 2008

Non-Resonance Distributions

- 2 Non-Resonant distributions:
- ${ }^{25} \mathrm{O}$ - Maxwellian distribution of beam velocity neutrons $\mathrm{T}=1.75 \mathrm{MeV}$
- ${ }^{24} \mathrm{O}$ - Gaussian distribution Centroid=10 MeV Sigma $=5 \mathrm{MeV}$
- The resulting shapes do not differ much in the relative decay spectrum
- Do produce different line-shapes for large relative velocity differences

${ }^{25} \mathrm{O}$ Decay Spectrum

Neutron decav energy (MeV)
Simulated line-shapes: (black) Sum of the Resonance (red) and non-resonance (blue) contributions (Maxwellian distribution)

[^1]
${ }^{25} \mathrm{O}$ Results

Mass excess of 27440(110) keV

Assuming 0p-0h ${ }^{24} \mathrm{O}$ configuration

- ${ }^{25} \mathrm{O}$ (g.s.) - ${ }^{24} \mathrm{O}$ (g.s.)
$\varepsilon 0 \mathrm{~d}_{3 / 2}=770(20) \mathrm{keV}$
- ${ }^{24} \mathrm{O}$ (g.s.) - ${ }^{23} \mathrm{O}$ (g.s.)

$$
\varepsilon 1 \mathrm{~s}_{1 / 2}=-4.09(13) \mathrm{MeV}^{1,2}
$$

- $\mathrm{N}=16$ shell gap size:

$$
\varepsilon 0 \mathrm{~d}_{3 / 2}-\varepsilon 1 \mathrm{~s}_{1 / 2}=4.86(13) \mathrm{MeV}
$$

${ }^{1}$ B. Jurado et al., Phys. Lett. B 649, 43 (2007) ${ }^{2}$ G. Audi et al., Nucl. Phys. A729, 2 (2003)

$\mathrm{N}=16$ Shell gap size from SPEs

1- and 2- Neutron Separation Energies

Calem Hoffman Florida State University PISA Workshop November 5, 2008

${ }^{24} \mathrm{O}$ * Results

- Single-particle configuration for first excited state gives 1^{+}and 2^{+}
- Decay to ${ }^{23} \mathrm{O} 1 / 2^{+}$g.s. by either $\mathrm{L}=0,2$ inside the sd shell
- All theories predict $2^{+}(\mathrm{L}=2)$ as lowest
- USD, USD05a, USD05b spectroscopic factors consistent with ZERO for $\mathrm{L}=0$ decay
- One and two single-level BreitWigner distributions fit to data

${ }^{24}$ O* Measurement: Single Resonance

${ }^{24} \mathrm{O}$ * Measurement: Two Resonances

Neutron decay energy (MeV)

[^2]
Excitation Energy of Observed States

- Excitation energy for the states

$$
\mathrm{E}^{*}=\mathrm{E}_{\text {decay }}+\mathrm{S}_{\mathrm{n}}\left({ }^{24} \mathrm{O}\right)
$$

- Sensitive to ${ }^{23} \mathrm{O}-{ }^{24} \mathrm{O}$ ground state masses
- New measurement ${ }^{1}$ gives $\mathrm{Sn}=4.09(10) \mathrm{MeV}$
- Atomic Mass Evaluation ${ }^{2} \mathrm{Sn}=3.62(25) \mathrm{MeV}$
- Using new mass measurements decay levels are:

$$
\mathrm{E}_{2+}^{*}=4.72(10) \quad \mathrm{E}_{1+}^{*}=5.33(11)
$$

- Ratio of contribution from 2^{+}to 1^{+}consistent with statistical value $\left(2 \mathrm{~J}_{2+}+1\right) /\left(2 \mathrm{~J}_{1+}+1\right)$:

$$
\sim 1.4 \text { to } \sim 1.67
$$

${ }^{24}$ O Level Scheme: Theoretical Predictions of Excited States

[^3]
N = 16 Shell Gap Size

- Taking a closed ${ }^{24} \mathrm{O}$ g.s. (0p-0h)
- Filled neutron $\mathrm{v} \mathrm{ls}_{1 / 2}$
- 2^{+}and 1^{+}states possible from a $1 \mathrm{p}-1 \mathrm{~h}$ excited configuration $\left(\mathrm{V} 1 \mathrm{~s}_{1 / 2}\right)^{1}\left({\mathrm{~V} 0 \mathrm{~d}_{3 / 2}}\right)^{1}$
- Weighted average of the 1^{+}and 2^{+}energies gives $\mathrm{N}=16$ shell gap of $4.95(16) \mathrm{MeV}$
- In agreement with 4.89 (13) MeV from ${ }^{25} \mathrm{O}$ ground state mass measurement ${ }^{1}$

${ }^{24} \mathrm{O} 2^{+}$Systematics

Doubly magic ${ }^{24} \mathrm{O}$

$$
(\mathrm{N}=16, \mathrm{Z}=8)
$$

Filling of the $\mathrm{v} 0 \mathrm{~d}_{5 / 2}$ orbital

0

Neutron Number (N)

Calem Hoffman Florida State University PISA Workshop November 5, 2008

Decay results

${ }^{23} \mathrm{O}$

New S_{n} values!
${ }^{24} \mathrm{O} \mathrm{S}_{\mathrm{n}}=4.09$ (13) MeV

Conclusions on ${ }^{24,25} \mathrm{O}$

- The size of $\mathrm{N}=16$ shell gap has been determined
- ${ }^{25} \mathrm{O}$ mass measurement -4.89 (13) MeV
- ${ }^{24} \mathrm{O}$ excited states $-4.95(16) \mathrm{MeV}$
- ${ }^{24} \mathrm{O}$ shows evidence of a doubly magic nucleus
- Relatively large shell gap at $\mathrm{N}=16$
- Very high 2^{+}energy
- Possible by neutron spectroscopy using a knock-out reaction
C. R. Hoffman et al., Phys. Rev. Lett. 100, 152502 (2008)

Completed MoNA-Sweeper Experiments

Selective Population and Neutron Decay of an Excited State of ${ }^{\mathbf{2 3}} \mathbf{O}$
A. Schiller, ${ }^{1, *}$ N. Frank,,${ }^{1,2,3}$ T. Baumann, ${ }^{1}$ D. Bazin, ${ }^{1}$ B. A. Brown, ${ }^{1,2}$ J. Brown, ${ }^{4}$ P. A. DeYoung, ${ }^{5}$ J. E. Finck, ${ }^{6}$ A. Gade, ${ }^{1,2}$
J. Hinnefeld, ${ }^{7}$ R. Howes, ${ }^{8}$ J.-L. Lecouey, ${ }^{1,{ }^{\dagger}}$ B. Luther, ${ }^{3}$ W. A. Peters, ${ }^{1,2}$ H. Scheit, ${ }^{1}$ M. Thoennessen, ${ }^{1,2}$ and J. A. Tostevin ${ }^{1,2,9}$

${ }^{26} \mathrm{Ne}+$ Be Target $-2 \mathrm{p} \ln { }^{23} \mathrm{O}^{*}$

First excited hole state $\left(0 \mathrm{~d}_{5 / 2}\right)$ strongly populated

$$
\mathrm{E}_{\text {decay }}=0.45(2) \mathrm{MeV} \quad \mathrm{~T}=0.7 \mathrm{MeV}
$$

Completed MoNA-Sweeper Experiments

PHYSICAL REVIEW C 78, 044303 (2008)

Ground state energy and width of ${ }^{7} \mathbf{H e}$ from ${ }^{8} \mathbf{~ L i ~ p r o t o n ~ k n o c k o u t ~}$

D. H. Denby, ${ }^{1}$ P. A. DeYoung, ${ }^{1}$ T. Baumann, ${ }^{2}$ D. Bazin, ${ }^{2}$ E. Breitbach, ${ }^{3}$ J. Brown, ${ }^{4}$ N. Frank,,${ }^{2,5, *}$ A. Gade, ${ }^{2,5}$ C. C. Hall, ${ }^{1}$ J. Hinnefeld, ${ }^{6}$ C. R. Hoffman, ${ }^{7}$ R. Howes, ${ }^{3}$ R. A. Jenson, ${ }^{8}$ B. Luther, ${ }^{8}$ S. M. Mosby, ${ }^{2,5}$ C. W. Olson, ${ }^{8}$ W. A. Peters,,${ }^{2,5}$ A. Schiller, ${ }^{9}$ A. Spyrou, ${ }^{2}$ and M. Thoennessen ${ }^{2,5}$

${ }^{8}$ Li on Be Target @ $41 \mathrm{MeV} / \mathrm{u}$ -p ${ }^{7} \mathrm{He}$

No evidence for low lying $1 / 2$ - excited state

$$
\mathrm{E}_{\text {decay }}=400(10) \mathrm{keV} \quad \Gamma=160^{+40}{ }_{-15} \mathrm{keV}
$$

Completed MoNA-Sweeper Experiments

ScienceDirect

Nuclear Physics A 801 (2008) 101-113

NLCLEAR PHYSICS
\qquad

$$
{ }^{48} \mathrm{Ca}+\mathrm{Be} @ 60 \mathrm{MeV} / \mathrm{u}
$$

Production of nuclei in neutron unbound states via primary fragmentation of ${ }^{48} \mathrm{Ca}$
G. Christian ${ }^{\text {a,b }}$, W.A. Peters ${ }^{\mathrm{a}, \mathrm{b}, 1}$, D. Absalon ${ }^{\mathrm{c}}$, D. Albertson ${ }^{\mathrm{a}, \mathrm{b}}$, T. Baumann ${ }^{\text {a }}$, D. Bazin ${ }^{\text {a }}$, E. Breitbach ${ }^{\text {c }}$, J. Brown ${ }^{\text {d }}$, P.L. Cole ${ }^{e}$, D. Denby ${ }^{\text {f }}$, P.A. DeYoung ${ }^{\text {f }}$, J.E. Finck ${ }^{\mathrm{g}}$, N. Frank ${ }^{\mathrm{a}, \mathrm{b}, 2}$, A. Fritsch ${ }^{\text {d }}$,
C. Hall ${ }^{\text {f }}$, A.M. Hayes ${ }^{\text {a,b }}$, J. Hinnefeld ${ }^{\text {h }}$, C.R. Hoffman ${ }^{\text {i }}$, R. Howes ${ }^{\text {c }}$, B. Luther ${ }^{\mathrm{e}}$, E. Mosby ${ }^{\mathrm{j}}$, S. Mosby ${ }^{\mathrm{j}}$, D. Padilla ${ }^{\mathrm{f}}$, P.V. Pancella ${ }^{\mathrm{k}}$, G. Peaslee ${ }^{\text {f }}$, W.F. Rogers ${ }^{\text {j }}$, A. Schiller ${ }^{\text {1 }}$, M.J. Strongman ${ }^{\text {a,b }}$, M. Thoennessen ${ }^{\text {a,b,* }}$, L.O. Wagner ${ }^{e}$

Ongoing and Future MoNA-Sweeper Experiments

- ${ }^{12,13} \mathrm{Li}$
- ${ }^{14} \mathrm{~B}$ and ${ }^{14} \mathrm{Be}$ Beams
- ${ }^{16} \mathrm{Be},{ }^{16} \mathrm{~B}$
- ${ }^{17} \mathrm{C}$ and ${ }^{17} \mathrm{~B}$ Beams
- ${ }^{24} \mathrm{~N}$ g.s.
- 26F Beam

Taken from: Spyrou et al., DNP 2008

- ${ }^{26} \mathrm{O}$ g.s.
- 27F Beam

All Under Analysis!!!

Acknowledgments

Florida State: S. L. Tabor, G. V. Rogachev and A. Volya

MoNA Collaboration: M. Thoennessen ${ }^{\text {a }}$, D. Bazin ${ }^{\text {a }}$, T.
Baumann ${ }^{\text {a }}$, G. Christian ${ }^{\text {a }}$,P. Deyoung ${ }^{\text {b }}$, N. Frank ${ }^{\text {a }}$, J.
Hinnefeld ${ }^{c}$, W. A. Peters ${ }^{\text {a }}$, A. Schiller ${ }^{\text {a }}$, and H. Scheit ${ }^{\text {a }}$
${ }^{a}$ NSCL / Michigan State University
${ }^{\mathrm{b}}$ Hope College
${ }^{\text {c }}$ Indiana University at South Bend
University of Tokyo: K. Tsukiyama and T. Otsuka

[^0]: Calem Hoffman Florida State University

[^1]: Calem Hoffman Florida State University

[^2]: Calem Hoffman Florida State University

[^3]: USD - B. A. Brown and B. H. Wildenthal, Annnu. Rev. Nucl. Part. Sci. 38, 29 (1998)
 USD05a,b - B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315
 SDPF-M - Y. Utsuno et al., Phys. Rev. C 60, 054315 (1999)
 A. Volya and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005)
 A. Obertelli et al., Phys. Rev. C 71, 024304 (2005)
 E. Khan et al., Phys. Rev. C 66, 024309 (2002)
 K. Tsukiyama and T. Otsuka, Private communication

