Dissociation of Relativistic Projectiles with the Continuum-Discretized Coupled-Channels Method

Kazuyuki Ogata (Kyushu University, Japan)

Carlos A. Bertulani (Texas A&M-Commerce)

"I am very happy today... a huge victory for Democracy." Angela Bonaccorso, Pisa, Italy, 11/05/2008 Why dissociation?

Ex: <u>Coulomb dissociation</u>

Shoemaker-Levy comet

- Baur, Bertulani, Rebel, NPA 458 (1986) 188
- Motobayashi, PRL 73 (1994) 2680 ⁷Be(p, y)⁸B

CDCC

Some CDCC projects

200 – 300 A MeV

1. Eikonal CDCC

2. Eikonal CDCC with Relativistic Corrections

50 – 100 A MeV

CDCC with microscopic optical potential
 4-body CDCC

< 10 A MeV

- 1. Transfer reaction with rearrangement
- 2. Incomplete (breakup) fusion with CDCC
- 3. Description of ternary processes in nucleosynthesis

More about CDCC

Review papers (*keystones***)**

✓ Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. 89, 1 (1986)

✓ Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. 154 (1987) 126

□ Theoretical foundation based on the distorted-wave Faddeev formalism

✓ Austern, Yahiro and Kawai, PRL **63**, 2649 (1989)

✓ Austern, Kawai and Yahiro, PRC 53, 394 (1996)

□ <u>Nuclear BU</u> (real or virtual):

- ✓ ⁵⁸Ni(d,d) at 56, 80, 200, 400, 700 MeV; ²⁰⁸Pb(d,d) at 56 MeV
- ✓ (d,pn) on ¹²C, ⁵¹V, ¹¹⁸Sn at 56 MeV; (³He,dp) on ¹²C, ⁵¹V, ⁹⁰Zr at 90 MeV (³He,dp) on ¹²C, ²⁸Si, ⁵⁸Ni at 52 MeV
- ✓ Elastic, inelastic, and BU processes of ⁶Li and ⁷Li on various stable nuclei.

Coulomb (and nuclear) BU:

- ✓ 208 Pb(6 Li, α d) at 156 MeV: *Hirabayashi and Sakuragi, PRL*69, 1892 (1992)
- ✓ 208 Pb(8 B,p⁷Be) at 44 and 83 A MeV, and 58 Ni(8 B,p⁷Be) at 26 MeV:

Davids et al., PRC63, 065806 (2001), Tostevin et al., PRC63, 024617 (2001)

High Energies: Eikonal-CDCC

D Eikonal approximation for scattering wave functions $\hat{\chi}_i(K_i, \bar{R})$:

Inclusion of Coulomb distortion

□ The total wave function is expanded as:

$$\psi^{\mathrm{E}} = \sum \phi_{c}(\vec{r}) \ e^{-i(m-m_{0})\varphi_{R}} \chi_{c}(b,z)\varphi_{c}^{\mathrm{C}},$$

where φ_c^{C} is the Coulomb wave function:

$$\varphi_{c}^{C} = \frac{e^{-\pi\eta/2}}{(2\pi)^{3/2}} \Gamma(1+i\eta) e^{i\vec{K}_{c}\cdot\vec{R}} F(-i\eta,1,i(K_{c}R-\vec{K}_{c}\cdot\vec{R})).$$

$$\equiv C$$

Approximations:

- $\nabla \varphi_c^{\rm C} // \vec{z}$ for sufficiently large impact parameters
- Local Semi-Classical Approximation to $\varphi_c^{\rm C}$
- Neglect of channel dependence of F

$$\frac{i\hbar^2}{\mu_R} \underbrace{\frac{K_c^{(b)}(z)}{dz} \chi_c^{(b)}(z)}_{c'}(z) = \sum_{c'} F_{cc'}^{(b)}(z) \chi_{c'}^{(b)}(z) e^{i(K_{c'}-K_c)z}.$$

$$\frac{\hbar^2}{2\mu_R} K_c^2(R) = E - \varepsilon_i - \frac{Z_P Z_T e^2}{R}.$$

Hybrid CDCC

□ Scattering amplitude: $f = f^{C} + f^{N}$, where f^{C} is the Rutherford amplitude and $f = \sum f_{c} = \sum \frac{2\pi}{2L+1} \frac{2L+1}{i^{m}Y_{c}} (\Omega) [S^{b(L)} - \delta_{c}]$

$$f_{L} = \sum_{L} f_{L} \equiv \sum_{L} \frac{2\pi}{iK_{i}} \sqrt{\frac{2L+1}{4\pi}} i^{m} Y_{Lm}(\Omega) [S_{i,0}^{b(L)} - \delta_{i,0}]$$

□ <u>Hybrid scattering amplitude</u> is given by • S-matrix

 $f_{i,0}^{\rm H} \equiv \sum_{L=0}^{L_{\rm C}} f_L + \sum_{L=L_{\rm C}+1}^{L_{\rm max}} f_L^{\rm E}$

$$\hat{\chi}_i(b(L), z) \xrightarrow{z \to \infty} S_{i,0}^{b(L)}$$

the use of f_L^E is made only for sufficiently large L
hybrid method suitable for intermediate energies

Ogata, Yahiro, Iseri, Matsumoto, Kamimura, PRC<u>68</u>, 064609 (2003)

Relativity

Relativity and strong interaction of composite particles *Ex: Dirac particle (proton) + nucleus*

- meson exchange, two-nucleon interaction
- mean field approximation
- U_0 (ω exchange), U_s (2π exchange)

Ray, Hoffmann, PRC 31, 538 (1985)

 $\left[E - V_{C} - U_{0} - \beta \left(mc^{2} + U_{S}\right)\right]\Psi = -i\hbar c \mathbf{a} \cdot \nabla \Psi$ non-relativistic reduction $\left| -\frac{\hbar^2}{2m} \nabla^2 + U_{cent} + \left(\frac{\hbar}{2mc}\right)^2 \frac{1}{r} \frac{d}{dr} U_{SO} \,\boldsymbol{\sigma} \cdot \mathbf{L} \right| \boldsymbol{\phi} = E \boldsymbol{\phi}$ $U_{cent} = m * (U_0 + U_s) + \cdots$ $m^* = 1 - \frac{U_0 - U_S}{2mc^2} + \cdots$ $U_{so} = U_0 - U_s + \cdots$ •For 2 colliding nuclei, similar

theory does not exist

Relativity in peripheral nuclear collisions

□ <u>Kinematical correction</u>:

 \checkmark Usually only this correction is included in existing codes.

Dynamical correction:

✓ Based on (relativistic) Lienard-Wiechert expression of the EM field:

Winther, Alder, NPA**319**, 518 (1979) Esbensen and Bertulani, PRC**65**, 024605 (2002) Bertulani, PRL**94**, 072701 (2005).

Relativistic E1 and E2 interactions

$$V_{E1,\mu} = \sqrt{\frac{2\pi}{3}} r Y_{1\mu} \left(\hat{\mathbf{r}} \right) \frac{\gamma e Z_A e_{eff}^{(1)}}{\left(b^2 + \gamma^2 Z^2 \right)^{3/2}} \begin{cases} \mp b & (\mu = \pm 1) \\ \sqrt{2}Z & (\mu = 0) \end{cases}$$
$$V_{E2,\mu} = \sqrt{\frac{3\pi}{10}} r^2 Y_{2\mu} \left(\hat{\mathbf{r}} \right) \frac{\gamma e Z_A e_{eff}^{(2)}}{\left(b^2 + \gamma^2 Z^2 \right)^{5/2}} \begin{cases} b^2 & (\mu = \pm 2) \\ \mp 2\gamma^2 b Z & (\mu = \pm 1) \\ \sqrt{2/3} \left(2\gamma^2 Z^2 - b^2 \right) & (\mu = 0) \end{cases}$$

Bertulani, PRL94, 072701 (2005)

□ Inclusion of such potential with Lorentz contraction:

- ✓ Easy in cylindrical coordinate system (classical calculation)
- ✓ Difficult in spherical coordinate system (QM calculation)

c.f. Esbensen and Bertulani, PRC65, 024605 (2002)

Relativistic E-CDCC

Form factor of non-rel. E-CDCC:

$$F_{c'c}^{(b)}(Z) = \left\langle \Phi_{c'} \left| U_{1A} + U_{2A} \right| \Phi_{c} \right\rangle_{\mathbf{r}} e^{-i(m-m')\phi} = \sum_{\lambda} F_{c'c}^{(b);\lambda}(Z)$$

Rel. corr. to the form factor:

$$F_{c'c}^{(b);\lambda}\left(Z\right) \to f_{\lambda,m'-m}\gamma F_{c'c}^{(b)\lambda}\left(\gamma Z\right)$$

$$f_{\lambda,m'-m}^{\text{Coul}} = \begin{cases} 1/\gamma & (\lambda=1, m'-m=0) \\ \gamma & (\lambda=2, m'-m=\pm 1) \\ 1 & (\text{otherwise}) \end{cases} \qquad f_{\lambda,m'-m}^{\text{nucl}} = 1$$

□ <u>Assumptions</u>:

- \checkmark Point charges for 1, 2 and A
- ✓ Neglecting far-field ($r_i > R$) contribution
- \checkmark Correction to nuclear form factor —

Feshbach and Zabek, Ann. of Phys. **107** (1977) 110

Numerical Results

Applications: (a) proton halo ⁸**B**

⁷Be(p, γ)⁸B

Solar neutrinos and v-oscillations

Parker Kavanagh Filippone Hammache Hass Strieder Junghans

(b) neutron halo: ¹¹Be

Numerical Calculations

Reaction:

²⁰⁸Pb(⁸B, ⁷Be+p) at 250 A MeV and 100 A MeV ²⁰⁸Pb(¹¹Be, ¹⁰Be+n) at 250 A MeV and 100 A MeV

Projectile wave function and distorting potential

M. S. Hussein et al., PLB640, 91 (2006). (standard Wodds-Saxon)

D Modelspace:

Relative difference of the QM and EK

Comparison between f^{E} and f^{Q}

⁸B breakup by ²⁰⁸Pb at 250 A MeV

⁸B breakup by ²⁰⁸Pb at 250 A MeV

Partial breakup X-sec.

BU energy spectra

Comparison of the DDX

First-order eikonal aproximation

$$\psi_{c}^{(b)}(z) = e^{\frac{1}{i\hbar\nu_{c}}\int_{-\infty}^{z}F_{cc}^{(b)}(Z')dZ'} \left[\frac{1}{i\hbar\nu_{c}}\int_{-\infty}^{z}\sum_{c'\neq c}\left\{F_{cc'}^{(b)}(Z')\psi_{c'}^{(b)}(z')e^{i\left(K_{c'}^{(b)}-K_{c}^{(b)}\right)Z'}\right\} \times e^{\frac{1}{i\hbar\nu_{c}}\int_{-\infty}^{z'}F_{cc}^{(b)}(Z'')dZ''}dZ'+\delta_{c0}\right]$$

<u>S-matrix with 1st order calculation</u>:

✓ Elastic component

$$S_{0}^{(b)} \equiv \psi_{0}^{(b)}(\infty) = \exp\left[\frac{1}{i\hbar v_{0}}\int_{-\infty}^{z} F'_{00}^{(b)}(Z')dZ'\right]$$

✓ Non-elastic component

$$S_{c}^{(b)} = \frac{1}{i\hbar v_{c}} \int_{-\infty}^{\infty} F'_{c0}^{(b)} (Z') \psi_{0}^{(b)} (z') e^{i\left(K_{0}^{(b)} - K_{c}^{(b)}\right)Z'} dZ'$$

Full CC vs. 1st order perturbation

¹¹Be breakup by ²⁰⁸Pb at 250 A MeV

Results at 100 A MeV

BU energy spectra

Summary

- □ Dynamical relativistic effect is evaluated for ⁸B- and ¹¹Be-breakup reactions by ²⁰⁸Pb at 250 and 100 A MeV by means of E-CDCC.
 - ✓ Significant enhancement of the BU X-sec. of about 20 30 % is found at forward angles at 250 A MeV.
 - \checkmark At 100 A MeV relativistic effects are found to be about 10%.
- □ To draw a definite conclusion, at 100 A MeV in particular, the assumption used must be examined.
 - ✓ Point charge, non-farside calc., correction to nuclear FF, QM effects etc.

