

Resonant states of the exotic nuclei ^{6,7,8}He via direct reactions on a proton target

2nd-5th Nov. 08

vlapoux@cea.fr

Edifices at the limit of the nuclear binding

🔕 GOAL ?	Extension of systematics of neutron excitation along isotopic chains Characteristics of structure + low-lying resonances of drip-line nuclei
	EXCITATION ENERGY SPECTRUM FOR ⁶ He → ⁸ He(p,†) ⁸ He*
Experimental Tools ?	 Probe the structure & spectroscopy at large isospin → Measure unbound states → detection device for particle spectroscopy
Interpretation ?	COUPLED REACTION CHANNEL calculations
QUESTIONS	
Perspectives	Understanding of resonant states: NEED FOR AN IMPROVED THEORETICAL FRAMEWORK OF STRUCTURE AND REACTIONS

Nuclear structure towards the drip-lines : phenomena to explore & to understand

Predictions for ⁶He spectroscopy

V. Lapoux CEA-Saclay

Results from a previous experiment E4055 : ⁸He + p at 15.6 MeV/n

E4055 : goal of the experiment was ⁸He(p,p')] - MUST array ; SPIRAL ⁸He beam Additional data for ⁸He(p,t)⁶He

V. Lapoux CEA-Saclay

STS U

March 2007-1st campaign **E525S-Spectroscopy of** ⁶He via ⁸He(p,t) *Spokesperson SPhN; collaboration MUST2* PhD Thesis: X. Mougeot (SPhN) [→ Sept 08]

E525S : 8He+p @ GANIL

V. Lapoux CEA-Saclay

Excitation energy spectra with particle coincidences

V. Lapoux CEA-Saclay

Criteria for a resonant state

Effect of the experimental resolution: folding with a Gaussian function

Analysis of the ⁶He spectra: resonances

V. Lapoux CEA-Saclay

Analysis of the ⁶He spectra: resonances

→ Operations repeated for all Eexc spectra [c.m. slices in the kinematics]

3rd **step** : checking that the parameters of the resonances are conserved at the various c.m. angles

PISA 3-5 Nov. 08

Summary of the ⁶He spectroscopy

 [1] Jänecke et al., PRC 54 (1996) 1070

 [2] Nakayama et al., PRL 85 (2000) 262

 [3] Akimune et al., PRC 67 (2003) 051302

 [4] Nakamura, EPJA 13 (2002) 33

 S2
 Volya et al.,
 Hagen et al., PRC
 Myo et al., PRC

 1302
 PRL94 (2005)
 71 (2005)
 76(2007)

 052501
 044314
 054309

Controversy/debate: existence of the low-lying state ~ 1 MeV?

Spectroscopy of ⁷He, summary

Spectroscopy of ⁷He, summary

Breit-Wigner
$$f(\mathbf{E}) = \frac{1}{\pi} \frac{\Gamma_R/2}{(\mathbf{E} - \mathbf{E}_R)^2 + (\Gamma_R/2)^2}$$

Deformed resonance, by assuming energy-dependent width, for E > Er

$$\Gamma_R = \Gamma_R (1 + K(\mathbf{E} - \mathbf{E}_R))$$

Symmetric resonances ⇒ compatible with the previous E405S data

Spectroscopy of ⁷He: data vs Theories

Interpretation of direct reactions: ex of ⁸He+p @ 15.7 A.MeV

V. Lapoux CEA-Saclay

CRC analysis: structure of ⁸He

Consistent with the results from quasi-elastic scattering of ⁸He at GSI, LV Chulkov et al, NP*A759*, 43('05) [⁸He/⁶He(0+)] : 1.3 \pm 0.1 And recent theoretical calculations: Hagino, Takahashi, Sagawa PRC **77**, 054317 ('08) Neutron configurations % ⁸He (gs.) : $(1p_{3/2})^4$: 34.9 % ; $[(1p_{3/2})^2(p_{1/2})^2]$: 23.7 %

Transfer cross sections to ⁷He

E405S data: Skaza *et al.*, PRC **73**, 044301 (2006)

Coupled reaction channel analysis : Keeley *et al.*, PLB **646**, 222 (2007)

Couled reaction channel analysis and E4055 data in Keeley *et al.*, PLB 646 (2007) 222

Conclusions

> Identification of TWO NEW STATES IN ⁶He
 > State ~ 1 MeV CONFIRMED IN ⁷He

Future: complete CRC analysis of $d\sigma/d\Omega$ data

N. Keeley (Varsaw).et al. → FRESCO code, → Using 2 particle form factors

Tools for the spectroscopy of low-lying resonances

via direct nuclear reactions

Improved devices for the light charged particle spectroscopy Complete measurement of main reaction channels Access to bound & unbound states

Improved reaction framework for the interpretation of the observables: More realistic form factors in coupled Reaction Channel Analysis? coupling to the continuum : unbound states in the exit channel in CDCC?

Controversy/debate: existence of low-lying states Ex: ⁷He

Crucial questions

→ related to how we succeed in understanding the true nature of the resonant states It challenges our description of the unbound nuclei, our modelling of the nuclear correlations

> It deals with: Structure and reactions embedded in the continuum How to disentangle structure information from reactions effects? Sensitivity of the reactions to the resonances?

> > How to model the resonances ? Phase space (few-body kinematics) effects ? Deformation of the resonances ?

> > > We need to go further :

To develop our knowledge of the transition form factors to resonant states (criteria ?) To Know how the resonant states are deformed with the continuum coupling Energy -dependence ? L-dependence ? IRFU - SPhN : N. Alamanos, F. Auger, B. Avez, R. Dayras, A. Drouart, A. Gillibert, V. Lapoux, X. Mougeot (PhD 05-08), L. Nalpas, E. Pollacco, C. Simenel

IPN - Orsay : D. Beaumel, Y. Blumenfeld, J. Guillot, J-A. Scarpaci H. Iwasaki (*Univ Koln*), D. Suzuki (*Univ. of Tokyo*)

GANIL : C. Force, L. Gaudefroy, T. Al Kalanee, W. Mittig, T. Roger, P. Roussel-Chomaz

A. Soltan - Warsaw : N. Keeley, K. Rusek, I. Strojek

FLNR - Dubna : R. Wolski

University of Ioannina : A. Pakou, T. Mermizedakis

Florida State University : K. W. Kemper

saclay