

Unbound nuclei studied via transfer to the continuum reactions

D. M. Brink, A. Bonaccorso, N.Vinh Mau

- Semi-classical theory of transfer to the continuum
- Example of n+⁹Li
- Example of n+¹²Be
- Conclusions

Semiclassical treatment of core-target relative motion, BUT full QM treatment of n-target interaction AB and DM Brink, PRC38, 1776 (1988), PRC43, 299 (1991), PRC44, 1559 (1991).

$$\frac{d\sigma}{d\varepsilon_f} = C^2 S f_0^{\infty} d\mathbf{b_c} \frac{dP(b_c)}{d\varepsilon_f} P_{el}(b_c), \quad \text{where} \quad P_{el}(b_c) = |S_{cT}|^2$$

$$P_{ct}(b_c) = e^{(-\ln 2exp[(R_s - b_c)/a])}$$

$$R_s \approx 1.4(A_p^{1/3} + A_t^{1/3})$$

$$V(r) = U(r) + iW(r)$$

A study of semi-classical approximations for heavy ion transfer reactions, H. Hasan and D.M. Brink, J Phys G4, 1573 (1978).
Perturbation approach to nucleon transfer in heavy ion reactions, L. Lo Monaco and D.M. Brink, J.Phys. G, 935 (1985).

Understanding the transfer and breakup mechanisms

$$\begin{split} \frac{dP_t(b_c)}{d\varepsilon_f} &= \frac{1}{8\pi^3} \frac{mk_f}{\hbar^2} \frac{1}{2l_i + 1} \Sigma_{m_i} |A_{fi}|^2 \\ &\approx \frac{4\pi}{2k_f^2} \Sigma_{j_f}(2j_f + 1)(|1 - \bar{S}_{j_f}|^2 + 1 - |\bar{S}_{j_f}|^2)(1 + F_{l \to j})B_{l_f,i_f} \\ &= \sigma_{nN}(\varepsilon_f) \mathcal{F} \qquad \text{elastic} \qquad \text{absorption} \\ &= \sigma_{nN}(\varepsilon_f) \mathcal{F} \qquad \text{diffraction} \qquad \text{stripping} \\ &= \text{enhancement factor of final state} \\ &\text{interaction theory} \\ B_{l_f,l_i} &= \frac{1}{4\pi} \left[\frac{k_f}{mv^2} \right] \left[C_i |^2 \frac{e^{-2\eta b_c}}{2\eta b_c} M_{l_f l_i} \right] \qquad \text{angular parts of } \psi_{i,f} \\ &\qquad \mathbf{k_f} = (\mathbf{i}\eta, \mathbf{k_z}) \qquad \mathbf{k_f}^2 \text{ Fourier transform of initial w. f.} \end{split}$$

If both initial and final state have I=0

Bound to bound

$$\sigma(\varepsilon_f) = \frac{\pi}{2} |C_i C_f|^2 \left[\frac{\hbar}{mv}\right]^2 \int_0^\infty d\mathbf{b_c} \frac{e^{-2\eta b_c}}{\eta b_c} e^{(-\ln 2exp[(R_s - b_c)/a])}$$

Bound to continuum

$$\frac{d\sigma}{d\varepsilon_f} = \left(\frac{\sin\delta_0}{k_f}\right)^2 |C_i|^2 \frac{mk_f}{\hbar^2} \left[\frac{\hbar}{mv}\right]^2 \int_0^\infty d\mathbf{b_c} \frac{e^{-2\eta b_c}}{\eta b_c} e^{(-\ln 2exp[(R_s - b_c)/a])}$$

scattering length

$$a_s = -\lim_{k \to 0} \; rac{tan\delta_0}{k}$$

PHYSICAL REVIEW C

VOLUME 49, NUMBER 1

JANUARY 1994

Low-lying structure of ¹⁰Li in the reaction ¹¹B(⁷Li,⁸B)¹⁰Li

B. M. Young, W. Benenson, J. H. Kelley, N. A. Orr,* R. Pfaff, B. M. Sherrill, M. Steiner, M. Thoennessen, J. S. Winfield, J. A. Winger,[†] S. J. Yennello,[†] and A. Zeller

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

(Dessived 22 June 1002)

The first excited state of ${}^{9}Li$ is at $E^*=2.7$ MeV

- \rightarrow p_{1/2} state is at 0.595 MeV
- → s-state is virtual

→ No inelastic channel

→ No use of the stripping part of the transfer cross section

Potential correction which originates from particle-vibration couplings

N. Vinh Mau and J. C. Pacheco, Nucl. Phys. A607 (1996) 163.

$$\begin{split} U(r) &= V_{WS} + \delta V \\ \delta V(r) &= 16\alpha e^{2(r-R)/a}/(1+e^{(r-R)/a})^4 \\ \text{with} \ \ R &\approx r_0 A^{1/3} \end{split}$$

Istituto Nazionale di Fisica Nucleare

Targets and neutron bound initial state parameters:

Target	d	⁹ Be	$^{13}\mathrm{C}$
$\varepsilon_i(MeV)$	-2.22	-1.66	-4.95
l_i	0	1	1
j_i	1/2	3/2	1/2
$C_i(fm^{-\frac{1}{2}})$	0.95	0.68	1.88

⁹Li(X,X-1) ¹⁰Li

effective range theory (1st order)

$$\rightarrow k \cot a \delta = -\frac{1}{a_s} + \frac{1}{2} r_o k^2$$

$$\alpha$$
=-10.915 a_s =-26.2 fm r_o =4.3 fm
Nakamura r_o =5.6 fm

¹²Be-n relative energy spectrum C(¹⁴B,¹²Be+n)X (these J.L. Lecouey 2002)

FIG. 3. ¹²Be-*n* relative energy spectrum. The points are the data, the thick solid line the result of a fit including an *s*-wave resonance (thin solid line) and a *d*-wave resonance (dashed line) and in the right panel, an event-mixing "background" (dotted-dashed line). The parameters shown are those of the *s*-wave resonance Breit-Wigner lineshape. Note : a third resonance was tentatively introduced near 4 MeV (dotted line) but is not statistically significant. Its presence does not modify the fit in the region of interest.

resonance states in $n+^{12}$ Be

Overview for n+¹²Be

Conclusions

- transfer to the continuum method is well suited to study unbound systems such as ¹⁰Li which are building blocks of borromean nuclei.
- we are able to determine a_s and the resonance of unbound single particle states