Spectroscopic studies with the raytracing magnetic spectrometer MAGNEX

F.Cappuzzello

Workshop on Spectroscopic Factors March 2–12 2004 ECT*

The MAGNEX collaboration

<u>A.Cunsolo</u>, F.Cappuzzello, A.Foti, A.Lazzaro, C.Nociforo, S.E.A.Orrigo, J.S.Winfield, G.Longo

Dipartimento di Fisica, Università di Catania, Catania, Italy INFN–LNS, Catania, Italy INFN, Sez. Catania, Catania, Italy

A.Bonaccorso, W.Mittig, P.Roussel–Chomaz, H.Lenske, H.Petrascu

INFN, Sez. Catania, Catania, Italy GANIL, Caen, France Universitatat Giessen, Giessen, Germany NIPNE, Bucarest, Romania

- Some experimental challenges associated with modern nucler spectroscopy
- The MAGNEX spectrometer
- Planned experiments
- Conclusions and outlook

Spectroscopy with EXCYT RIBs

- Low intensity (compared to normal) beams
- Excellent optical properties of the EXCYT RIBs.
- Tandem energies for light to intermediate mass nuclei

Heavy nuclei spectroscopy

- High density of states also at low excitation energy
 - Spectroscopic information distributed over many transitions, many of which are weakly populated

- High energy resolution (beams from electrostatic accelertors, thin target thickness and good detectors)
- High beam intensity and efficient detection systems

 Modern high resolution magnetic spectrometers are a good choice (e.g. Q3D with new focal plane detector was crucial to discover supersimmetry!)

"Clever" spectrometers

• Possible definition: spectrometer reconstructing a neet image by an optically aberrated one

Practically one needs

- Detailed knowledge of the magnetic field maps
- Algorithms for high order solution of equation of motion and inversion of transport matrices
- **Detectors** to measure positions and angles at the focus

Inversion of transport matrices

$$x_{i} = F_{1}'(x_{f}, \theta_{f}, y_{f}, \phi_{f}, l_{f})$$

$$\theta_{i} = F_{2}'(x_{f}, \theta_{f}, y_{f}, \phi_{f}, l_{f})$$

$$y_{i} = F_{3}'(x_{f}, \theta_{f}, y_{f}, \phi_{f}, l_{f})$$

$$\phi_{i} = F_{4}'(x_{f}, \theta_{f}, y_{f}, \phi_{f}, l_{f})$$

$$\delta = F_{5}'(x_{f}, \theta_{f}, y_{f}, \phi_{f}, l_{f})$$

• Large acceptance condition

$$x_{i}(f) = R_{ij} x_{j}(i) + T_{ijk} x_{j}(i) x_{k}(i) + \dots$$

- For MAGNEX up to 11th order !
- Differential algebra (Ex:COSY INFINITY) M. Berz et al., PRC 47 (1993) 537

$$M_n =_n (A_1^{-1} \cap (I - A_n^* \cap M_{n-1}))$$
 Iterative formula

Limits of the software techniques

Practical limit for software compensation of aberrations

$$x'_f = x_f - (x \mid \theta^3)\theta^3 = x_f - C$$

$$\boldsymbol{\sigma}_{C} = \frac{fC}{f\theta} \boldsymbol{\sigma}_{\theta} = 3(x \mid \theta^{3}) \theta^{2} \boldsymbol{\sigma}_{\theta}$$

 $\sigma_{c} / C = 3\sigma_{\theta} / \theta$, if $\sigma_{\theta} \sim 10$ mr and $\theta \sim 100$ mr $\sigma_{c} / C \sim 30\%$!!! (partial compensation)

The aberrations should be minimised by hardware

Hardware minimisation for MAGNEX

- Rotation of focal plane detector of 59°
- 8th order polinomyal shaping of dipole boundaries
- Introduction of surface coils in the dipole pole

Overview of the detection system

Quantities to measure:

Trajectory reconstruction

Ion identification

 $X_f \theta_f Y_f \phi_i$

Resolution constraints: $\Delta \theta_{\rm f} < 10 \, {\rm mr} \quad \Delta \phi_{\rm i} \sim 8 \, {\rm mr}$ $M \leftarrow T_{OF}$, I_f (δ , θ) $Z \leftarrow dE/dx$, E $\mathbf{q} \leftarrow \mathbf{E}, \mathbf{T}_{0F}, \mathbf{I}_{f}(\delta, \theta)$

 $\Delta x_f < 1 \text{ mm} \quad \Delta y_f \sim 1 \text{ mm} \quad \Delta T_{OF} \sim 1 \text{ ns} \quad \Delta I_f \sim (1/200) I_f$ Δ (dE/dx) ~ 5 % Δ (E) ~ 1 %

- Geometrical constraints (space, magnetic fields, shapes, etc.)
- **Energy threshold (foils, gas pressure)**
- Cost and various complications (rate, electronics, number of

Definition of the detection system

 <u>Position Sensitive start Detector</u> (PSD), based on microchannel plate, for measurement of φ_i and θ_i and generation of T_{START}

• Focal Plane Detector (FPD) for measurement of $x_f, y_f, \theta_f, \phi_f$, dE/dx, E_{res} and T_{STOP} with low energy threshold

Layout of the FPD

- Trapezoidal geometry
- Window length 92 cm. Height 20 cm. Depth 16 cm
- Isobutane pressure between 5 e 50 mbar
- Energy threshold down to 0.5 MeV/amu
- No intermediate foils
- Maximum counting rate 4 kHz

Reconstructing trajectories

ANGULAR AND MASS RESOLUTION

• Angular and mass resolution are ~ ion-independent

Reconstructing trajectories

Energy resolving power for $^{6}Li + {}^{12}C (100 \ \mu g/cm^{2})$

Experimental lines

- Commissioning of the spectrometer with known reactions like (⁷Li,⁷Be) with Tandem beams
- Experiments with **EXCYT** RIB's
- Spectroscopic studies of <u>heavy ions</u> with intense proton beams
- Experiments of nuclear astrophysics (Trojan Horse Method)
- Experiments with <u>quasi-stable</u> (e.g. ¹⁴C and tritium) Tandem beams

Homologous states near shell closure

- Odd nuclei = even core + 1 nucleon
- Weak coupling between the unpaired nucleon and magic number core

- Core excitations not washed out from spectator nucleon
- Core excited states are generators of multiplets on the odd nucleus with |Jc -Jp|<J<Jc+Jp
- Generator states and correspondent

Properties of homologous states

 Very similar response to direct reaction probes

- Same angular distriution shapes
- Same integrated cross section (of course distributed over all the multiplet states)
- Dependency of the integrated cross section on 2J+1 for the multiplet states
- **Observed in (p,α) and (p,t) reactions** (J.N.Gu et al. PRC 55 (1997)2395 and P.Guazzoni et al., PRC 62 (2000) 054312)

(p,t) reaction on ⁴⁵Sc and ⁴⁴Ca targets

K.A.Erb and T.S.Bhatia PRC 7 (1973) 2500

- Overall experimental energy resolution (only) 70 keV
- Consequently homologous states observed only for 0⁺ core

Astonishingly identical cross sections

(p,t) reaction on ⁴⁵Sc and ⁴⁴Ca targets

What we expect to get with MAGNEX?

Some numbers

- Proton beam expected intensity of 5×10¹² pps and energy of 28 MeV
- MAGNEX acceptance 51 msr
- Scattering angles accepted with a unique setting θ_{lab} = 1°÷15° (5 angular settings to measure all the relvant angular distributions)
- Expected average cross section ~ 0.1 ÷ 100 μb/sr
- Explored energy spectrum up to 5 MeV for each magnetic setting

11th order reconstructed ⁴³Sc doublet

 45 Sc(p,t) 43 Sc at 28 MeV and $\theta_1 = 1^{\circ} \div 15^{\circ}$

Exploration of 8He

• Excited states observed up to 7 MeV T.Stolla et al. Z.Phys A 356 (1996) 233

- The 2⁺ excited state was observed at 2.7 MeV in some experiments and at 3.6 MeV in other
- In the last compilation of A=8 nuclei (J.H.Kelley et al.) such state is given at 3.1 MeV ± 0.5 MeV

W. Von Oertzen et al. Nucl.Phys.A588 (1995) 129

Importance of E_x of 2⁺ in ⁸He

Splitting of p_{1/2} and p_{3/2} s.p. levels
 decreases as n/p
 ratio increases –
 effect of weakening
 of spin-orbit
 interaction.

Some numbers

- ⁸Li expected intensity of 1×10⁶ pps
- MAGNEX acceptance 51 msr
- Scattering angles accepted with a unique setting $\theta_{lab} = 1^{\circ} \div 15^{\circ}$ corresponding to $\theta_{cm} = 1^{\circ} \div 35^{\circ}$
- Expected average cross section ~ 200 μb/sr for Gamow Teller transitions (from systematics)
- Rate/target thickness ~ 1.6 / (1 μm) counts/hour
- Effect of target on the energy resolution: ~ 28 keV / (1 μm)
- Strong kinematic effect (> 2 MeV in the accepted

Cosymag simulations (initial conditions)

⁷Li(⁸Li,⁷Be)⁸He at 57 MeV

Cosymag simulations (Observation at the focal plane)

⁷Li(⁸Li,⁷Be)⁸He at 57 MeV

Cosymag simulations (11th order Reconstruction)

⁷Li(⁸Li,⁷Be)⁸He at 57 MeV

11th reconstructed ⁸He spectrum

⁷Li(⁸Li,⁷Be)⁸He at 57 MeV

Experiments with CS beams

 Exploration of the (⁷Li,⁷Be) reaction at intermediate energies to study the reaction mechanism

• Study of the IVGMR via (⁷Li,⁷Be) on ⁴⁰Ca and ²⁰⁸Pb at 50 MeV/U (Nakayama et al. PRL 83 (1999) 690)

 Transfer in the continuum by the ²⁰⁸Pb(¹⁴N,¹³N)²⁰⁹Pb reaction at 35 MeV/u (discussed by A.Bonaccorso and S.Gales)

Experiments with ¹⁴C beams at Tandem energies

• Single and double charge exchange at low energy

Example: ¹¹B(¹⁴C,¹⁴N)¹¹Be and ¹¹B(¹⁴C,¹⁴O)¹¹Li

• Requires a specialyzed source due to contamination from the beam

Conclusions and Outlook

• An innovative instrument for nuclear spectroscopic research is under construction at the LNS laboratory

• First generation experiments planned with MAGNEX both with stable and radiocative beams starting at the end of this year

• Suggestions for possible experiments with MAGNEX will be warmly welcomed