EXTENDED SUDDEN APPROXIMATION FOR HIGH ENERGY NUCLEON REMOVAL

> F. CARSTOIU –IPNE Bucharest with E. SAUVAN, N. ORR, A. BONACCORSO

Summary

- 1. INTRODUCTION
- 2. BASIC ASSUMPTIONS
- **3. BREAKUP PROBABILITIES**
- 4. MOMENTUM DISTRIBUTIONS
- 5. COULOMB DISSOCIATION
- 6. **RESULTS**

Breakup

2. Basic assumptions of the model

- The reaction proceeds by instantaneous removal of a nucleon from the projectile without disturbing the remaining nucleons
- High energy regime. The intrinsic velocity of the valence nucleon is much smaller than the projectile velocity.
- **#** The projectile and the fragment follow straight line trajectories.
- **#** Final state interactions are neglected.
- **#** Target is a black disk. The absorbed nucleon is not observed.
- One bound state. The transition probabilities to the continuum are calculated via sum rules.
- Only the transverse component of the momentum transfer generated by Coulomb interaction is retained.

Schematic layout

Coordinates

3. Breakup probabilities

The ground state of the projectile

 $|J^{\pi}\rangle = [I_c^{\pi} \otimes nlj]^{J^{\pi}}$

$$\sigma_{-1n}(I_c^{\pi}) = \sum_{nlj} C^2 S(I_c^{\pi}, nlj) \sigma_{sp}(nlj, S_n^{eff}).$$

The removed part of the wave function is

 $\delta \psi(\vec{r}) = \begin{cases} \psi_0(x, y, z) & \text{if } (x, y, z) \in (w) \\ 0 & \text{otherwise.} \end{cases}$

The complement $(\bar{\psi})$

$$\psi_0 = \psi + \delta \psi$$

 $\int d\vec{r} \bar{\psi}^* \delta \psi = \int d\vec{r} \bar{\psi} \delta \psi^* = 0$

The stripping (absorption)probability

$$P_a(b) = \int d\vec{r} |\delta \psi|^2$$

The wave function after collision

$$\psi(\vec{r}) = e^{i\vec{q}\vec{r}}(\psi_0 - \delta\psi) = e^{i\vec{q}\vec{r}}\bar{\psi}$$

The elastic content

$$\gamma_{cl} = \int d\vec{r} \psi \psi_0^*(\vec{r})$$

The decaying state $(\psi_d(\vec{r}))$,

$$\psi_d(\vec{r}) = \psi_0(\vec{r}) - \delta\psi(\vec{r}) - \gamma_{cl}e^{-i\vec{q}\vec{r}}\psi_0(\vec{r})$$

The elastic probability

$$P_{el}(b) = 1 - P_a(b) - |\gamma_{el}(b)|^2$$

$$(m_j, \omega_j, \omega_n)$$

I. ELASTIC PROBABILITY

The elastic probability defined by,

$$\gamma_{el} = \int d\vec{r} \psi_0^*(\vec{r}) e^{i q \psi}(\psi_0 - \delta \psi) \equiv \gamma_C - \gamma_{C+N}$$

$$|\gamma_{C+N}|^2 = \hat{\rho}_0^2 \frac{4\pi^2 R_t^2}{q^2} J_1^2(qR_t)$$

5. Coulomb dissociation in sudden approximation

 $\vec{R}(t)=\vec{b}+vt\hat{z}$

$$V_2(\vec{r}, t) = V_{nt}(\vec{r} + \vec{R}(t)) + V_{dep}(\vec{r}, t)$$

$$V_{dip}(\vec{r}, t) = \frac{Z_c Z_t e^2}{A_p} \frac{\vec{r} \vec{R}(t)}{R^3(t)}$$

The TC breakup amplitude,

$$g_{lm}(\vec{k},\vec{b}) = \frac{1}{i\hbar} \int_{-\infty}^{\infty} dt < \phi^f |V_2(\vec{r},t)|\phi_{lm}^i >$$

$$g_{lm}(\vec{k},\vec{b}) = \frac{1}{i\hbar} \int d\vec{r} \int dt e^{-i\vec{k}\vec{r}' + i\omega t} e^{\frac{1}{i\hbar} \int_t^\infty dt' V_2(\vec{r},t')} V_2(\vec{r},t) \phi_{lm}(\vec{r}) \equiv <\vec{k} |I(\omega)| lm >$$

$$I_C(\omega) = \frac{1}{i\hbar} \int_{-\infty}^\infty dt e^{i\omega t} e^{\frac{1}{i\hbar} \int_t^\infty dt' V_{dip}(t')} V_{dip}(t).$$

$$I_C^{sa} = e^{-i\chi_C} - 1$$

with,

$$\chi_C = \frac{1}{\hbar} \int_{-\infty}^{\infty} dt V_{dip}(t) = \frac{1}{\hbar} \int_{-\infty}^{\infty} dt \frac{Z_c Z_t e^2}{A_p} \frac{\vec{s}\vec{b} + zvt}{(b^2 + v^2 t^2)^{3/2}} = \frac{2Z_c Z_t e^2}{A_p} \frac{\vec{s}\vec{b}}{\hbar v b^2}$$

 $e^{i\chi_c} \equiv e^{iq\theta}$

One neutron-removal cross sections in the planar cut-off approximation

One neutron-removal cross sections in the cylindrical wound approximation

4. Parallel momentum distributions

 One neutron-removal reactions for nuclei in psdshells E/A=40-60 MeV/u
 Data from:
 E. Sauvan et al., Phys Rev C 69 (2004), in press

Sudden approx vs Extended Glauber

Parallel momentum MeV/c

Transverse momentum distributions

Another result: One neutron-removal reactions for nuclei in psd-shells E/A=40-60 MeV/u

Data from:

Ħ

E. Sauvan et al., Phys Rev C 69 (2004), in press

FIG. 1. Comparison of experimental core fragment transverse momentum distributions (p_x) on carbon target and Glauber model calculations (plain line).

Rest frame and lab system distibutions

Reaction model effects on the shape of distributions

Transverse momentum distributions

Perpendicular momentum distributions

Sudden vs Glauber – transverse mom distributions

Transverse mom distrib as spectroscopic tool

Parallel distrib widths vs spectr acceptance

¹⁶C case

¹⁶C one neutronremoval parallel mom distrib vs spectrometer acceptance

#

¹⁹N case

¹⁹N one neutronremoval parallel mom distrib vs spectrometer acceptance

#

