Trento 3/4/04

Proton properties in the nucleus - quantum physics at all energy scales -

Wim Dickhoff Washington University in St. Louis (where the photon was discovered)

Outline

- Overview of theoretical understanding of proton properties in the nucleus
- Some well known results
- Overview of theoretical results
 - Consequences for excited states
 - Nuclei 🕫 recent developments
 - Nuclear matter
- Recent results from experiment
- What have we learned and what is unique?
- Conclusions

Review W.D. and C. Barbieri: arXiv:nucl-th/0402034

Basic idea of
(e,2e) or (e,e'p)
$$e'$$

$$q^{(0)}$$
A-1 system
$$\sigma_{L} \propto |\langle f | \rho(q) | i \rangle|^{2} \delta(energy)$$
Target atom or nucleus
$$\sigma_{L} \propto |\langle f | \rho(q) | i \rangle|^{2} \delta(energy)$$
Simplest case: $\langle \vec{p}, n^{A-1} | \rho(q) | 0^{A} \rangle \Rightarrow \langle n^{A-1} | a_{\vec{p}-\vec{q}} | 0^{A} \rangle$

$$\Rightarrow \sigma_{L} \propto \langle 0^{A} | a_{\vec{p}-\vec{q}}^{+} | n^{A-1} \rangle \langle n^{A-1} | a_{\vec{p}-\vec{q}} | 0^{A} \rangle \delta(energy)$$

Realistic case : distorted waves / more realistic description of knocked out particle

Theoretical Concepts

• Experimental data and spectral functions:

$$S_{h}(\alpha,\omega) = \sum_{n} \left| \left\langle \Psi_{n}^{A-1} \left| a_{\alpha} \right| \Psi_{0}^{A} \right\rangle^{2} \delta \left(\omega - \left(E_{0}^{A} - E_{n}^{A-1} \right) \right) \right|$$

• Related to single-particle propagator:

$$g(\alpha, \beta; \omega) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{\alpha} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{\beta}^{\dagger} | \Psi_{0}^{A} \rangle}{\omega - (E_{m}^{A+1} - E_{0}^{A}) + i\eta}$$
 \Leftarrow Particle part
+ $\sum_{n} \frac{\langle \Psi_{0}^{A} | a_{\beta}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{\alpha} | \Psi_{0}^{A} \rangle}{\omega - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$ \Leftarrow Hole part
 ϵ_{F}^{-}

• Occupation Number: $n(\alpha) = \int_{-\infty}^{1} S_h(\alpha, \omega) \, d\omega = \langle \Psi_0^A | a_{\alpha}^{\dagger} a_{\alpha} | \Psi_0^A \rangle$

•Also:
$$S_h(\alpha, \omega) = \frac{1}{\pi} \operatorname{Im} g(\alpha, \alpha; \omega)$$
 and $\mathcal{E}_F = E_0^A - E_0^{A-1}$

$$\varphi_{1s}(q) = 2^{3/2} \pi \frac{1}{(1+q^2)^2}$$

Hydrogen 1s wave function "seen" experimentally Phys. Lett. 86A, 139 (1981)

Works for nuclei too NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Except

Removal probability for valence protons from NIKHEF data

Note:

We have seen mostly data for removal of

valence protons

Consequences of correlated sp strength

M12 and M14 transitions in (e,e') only 50% of ph estimate $\Rightarrow Z_h * Z_p$ Data: PRC20, 497(1979)

Calculations of spectral functions in finite nuclei

- Qualitative features of experimental (e,e´p) data understood by coupling hole states to two-hole one-particle (2h1p) states
- Quantitative features can only be understood by including depletion effect due to SRC (10-15%) and the best possible description of low-energy collective correlations of 2h1p states including the giant resonance region (LRC)
- Current implementation works for nuclei like ⁴⁸Ca (see Nucl.Phys.A550, 1(1992))
- Depletion due to SRC is the same for mostly occupied levels (all calculations)
- Depletion due to LRC depends on nearness to Fermi energy
- ¹⁶O is hard problem! Geurts et al. PRC53, 2207(96) include SRC and LRC and are still 15-20% above experimental *p*-hole spectroscopic factors.
- LRC in ¹⁶O are very hard to calculate (see however Faddeev approach by C. Barbieri and WD, Phys Rev. C63,034313 (2001); C65,064313(2002))
- High-momentum components are at high missing energy as calculated for ¹⁶O in Phys. Rev. C49,R17(94) and C51, 3040(95)
- Indeed high-momentum removal is not seen at small missing energy
- Can it reliably be identified at high missing energy? ⇒ Jlab E97-006
- No "quenching" of spectroscopic factors at large Q²

Giant Resonances only correct when sp fragmentation is included

Giant Dipole

In turn: Excited states determine sp fragmentation

M. G. E. Brand, K. Allaart, and W. D. Phys. Lett. **214B**, 483-489 (1988); Nucl. Phys. **A509**, 1-38 (1990).

Faddeev technique and Long-Range Correlations

- Both pp (hh) and ph phonons are collective in nuclei using RPA
- Only Faddeev technique allows correct summation to all orders of these phonons
- Formalism: Phys. Rev. C**63**, 034313 (2001)
- Results: for ¹⁶O Phys. Rev. C**65**, 064313 (2002)

Spectroscopic Strength in ¹⁶O

Influence of SRC ✓ ✓
Translational Invariance ×
Influence of LRC ✓
TDA from Geurts et al.
Phys. Rev. C53, 2207 (96)

Influence of LRC ✓ ✓
RPA + Faddeev
C. Barbieri and WHD,
Phys. Rev. C65, 064313 (2002)

Still not solved!!

¹⁶O spectrum

Long-range correlations in nuclei are HARD to calculate!!!

C. Barbieri & WHD Phys. Rev. C68, 014311 (2003)

Need to do better!

Relevant for (e,e'p) and (e,e'2N) Data from NIKHEF : Phys. Rev. C49, 955 (1994)

Calculation:

- quasihole wave function from microscopic calculation
- spectroscopic factors adjusted
- damping from standard optical potential
- Data from Jlab (Q²=0.8): Phys. Rev. Lett. 84, 3265 (2000)

Calculation:

- spectroscopic factors from NIKHEF data
- same quasihole wave function
- damping from nuclear matter Radici, Dickhoff, Stoddard, PRC66,014613(2002)

⇒NO "QUENCHING"

Short-range correlations in nuclear matter

B.E.Vonderfecht et al. Nucl. Phys. A555, 1 (1993)

Results from Nuclear Matter 2nd generation (2000)

- Spectral functions for $k = 0, 1.36, \& 2.1 \text{ fm}^{-1}$
- Common tails on both sides of ε_F

M. van Batenburg (thesis, 2001) & L. Lapikás from ²⁰⁸Pb (e,e´p) ²⁰⁷Tl

Occupation of deeply-bound proton levels

Up to 100 MeV missing energy and 270 MeV/c missing momentum

Covers the whole mean-field domain for the FIRST time!!

Confirmation of theory

High-momentum components

Spectral Function for p_{1/2} at various energies

H. Müther and W.H.D Phys. Rev.C 49, R17 (1994)

No high momenta at low energy! Confirmed by experiment JLab Experiment 97-006 ⇒ Sick, Rohe et al. Location and number of high-momentum protons!

We now essentially know what all the protons are doing in the nucleus !!!

- Unique for a correlated many-body system
- Information available for electrons in atoms (Hartree-Fock)
- Not for electrons in solids
- Not for atoms in quantum liquids
- Not for quarks in nucleons

Location of single-particle strength in nuclei

SRC

Where the depleted strength ends up ...

Conclusions

- Good understanding of short-range correlations
 - Both in nuclear matter and nuclei
 - JLab data may show sensitivity
 - 2N knockout should be explored more fully
- Long-range correlations IMPORTANT
 - Link with realistic description of excited states
 - Needs more work
- We know what protons are up to in nuclei!!

What about open-shell systems?

Systems with N very different from Z?

- SRC still the same
- Less collective excited states
 - So less fragmentation
 - And removal of sp strength
 - More like mean-field (+ SRC)