Properties of asymmetric nuclear matter

Spectroscopic factors for N > Z

Lex Dieperink KVI Groningen

- Symmetry energy
- status of present calculations:
 BHF, variational, RMF, χPT;
 Self-consistent Green Function approach
- constraints: Symmetry energy \propto neutron skin
- nuclear matter: spectral functions
- finite nuclei: use of local density approximation (LDA)

Symmetry Energy

proton fraction $x = \rho_p / (\rho_p + \rho_n) = (1 - \alpha)/2$ $E(\rho, \alpha) = E(\rho, 0) + S_2(\rho)\alpha^2 + S_4(\rho)\alpha^4 + ...,$ $E(\rho, 0) = E_0 + \frac{K}{18\rho_0^2}(\rho - \rho_0)^2 + ...,$ Symmetry energy expanded around saturation density ρ_0

$$S_2(\rho) = \frac{1}{2} \frac{\partial^2 E(\rho, \alpha)}{\partial \alpha^2} |_{\alpha=0} = a_4 + \frac{p_0}{\rho_0^2} (\rho - \rho_0) + \frac{\Delta K}{18\rho_0^2} (\rho - \rho_0)^2 + \dots$$

Note: Parabolic approximation is accurate (S_4 small)

$$a_4 = S_2(\rho_s) = \frac{k_F^2}{6E_F} + S_{\text{pot}}$$

Many-body approaches to EoS

Realistic NN force as input π + ρ...
 Lowest order Brueckner-Hartree-Fock (Dirac-BHF)
 Variational approach
 Self-consistent Green function approach (New)
 EFT

- Effective Lagrangian methods Skyrme force Relativistic mean field $\sigma, \omega, \rho...$
- Non-conventional hyperons (input NY and YY interaction) quark degrees of freedom (QCD)
- Issue: 3-body interactions

(i) Microscopic approaches using NN

- Lowest Order Brueckner-HF
 - S_{pot} Insensitive to details of NN
 - Tensor force important in S_{pot}
 - effect of 3BF for $\rho > 1.5\rho_s$
- Variational+chain summ. Av14,18
 - Lower S than LOBF
 - 3BF increases stiffness

SCGF approach

- T = V + VGGT with dressed s.p. propagator $G^{-1} = \omega - \frac{k^2}{2m} - \Sigma$; self-energy $i\Sigma = Tr[TG]$
- Conserving approximation: Hole and particles treated on equal footing; $\epsilon_F = E_B/A$
- Binding energy $\frac{E}{A} = \frac{D}{\rho} \int \frac{d^3k}{(2\pi)^3} \int_{-\infty}^{\varepsilon_F} d\omega \left(\frac{k^2}{2m} + \omega\right) S_h(k,\omega)$, Spectral function:

 $S_h(k,\omega) = ImG(k,\omega) = \langle \psi | a_k^{\dagger} \delta(\omega - H) a_k | \psi \rangle$

- Inclusion of high-momentum nucleons: SNM: doubling of E_{kin} and E_{pot} , smaller $E(\rho)$; (increasing with density); stiffer EoS, improved ρ_s .
- PNM: absence of T=0 tensor force: effect is smaller Symmetry energy is reduced compared to LOBHF
- particle-hole correlations not included

Result SCGF compared to ccBHF

full curve: SCGF; dashed: ccBHF NN interaction: Reid93, PRC68(2003)

Note: improved saturation density; reduced S_{pot}

(ii) Mean field approaches

Non-relativistic Skyrme forces

Pelativistic Mean field models: Non-linear extension of Walecka model (no pions) either (i) σ and ω self interactions or (ii) density dependent couplings isovector channel: ρ and δ (I = 1 scalar) exchange Result: $a_4 \approx \frac{k_F^2}{6(M^{*2}+k_F^2)^{1/2}} + \frac{g_{\rho}^2}{8m_{\rho}^2}\rho_s - \frac{g_{\delta}^2}{8m_{\delta}^2}(\frac{M^*}{\epsilon_F})^2\rho_s;$ $p_0 \sim \frac{g_{\rho}^2}{8m_{\sigma}^2}\rho_s^2$

Chiral Dynamics

Kaiser et al: Expansion in terms of k_F/m_{π} up to $O(k_F^5)$ Pion loops with in-medium nucleon propagator

$$(\not p + M) \left(\frac{i}{p^2 - M^2 + i\epsilon} - 2\pi\delta(p^2 - M^2)\theta(p_0)\theta(k_F - |p|) \right)$$

 1π exch Hartree+ Fock with 2+3 medium insertions

Comparison

Symmetry energy and neutron skin

Furnstahl et al pointed out correlation between a_4 , $p_0 = \rho_s^2 S'(\rho_s)$, and neutron skin, $\Delta R = R_n - R_p$ in ²⁰⁸Pb

. – p.10/17

Can one understand the S **vs** ΔR **relation?**

- Landau-Fermi liquid theory (thanks to V.Rodin) $V_{ph} = F + F'\tau_1.\tau_2 + G\sigma_1.\sigma_2 + G'\sigma_1.\sigma_2\tau_1.\tau_2$ In mean field approx $H_{MF} = T + V_0 + V_s\tau^3 + V_c$
- self-consistency: $V_s(r) = 2F'(\rho_n(r) \rho_p(r))$
- Migdal relation: $a_4 = \frac{\epsilon_F}{3}(1+2F')$ relates SE with F'

Exp approaches to ΔR

- **p**,p' at 500-1000 MeV
- isovector Giant (spin) dipole resonance, IAS
- anti-protonic atoms
- parity violating electron scattering

Input of ΔR needed for

- \blacksquare weak charge Q_W
- deeply bound pionic atoms

Present status ΔR in ²⁰⁸**Pb**

method	ΔR [fm]	Error [fm]	ref
$(\vec{p}, p') \ (E = 0.5 - 1.0 \text{ GeV})$	0.097	0.014	Clark03
nucleon scatt (E= 40-200 MeV)	0.17		Karat02
anti-protonic atoms	0.15	0.02	Trzcin01
isovector giant dipole res.	0.19	0.09	Kras94
giant dip. res. (unpubl.)	0.14	0.05	Kras02
parity violating el sc	planned	1%	Jlab

- Exp consistent with $\Delta R \sim 0.10 0.15$ fm
- Clark et al: "Exp. seem to disagree with usual relativistic mean field models"
- New constraints might come from heavy ion reactions which probe higher densities

Symmetry energy and ΔR

In terms of mean field mc

0.35 0.3 0.25 $r_n - r_p \, (fm)$ 0.2 0.15 -Skyime 0.1 relativistic meson relativistic point coupling 0.05∟ 24 26 28 32 34 36 38 40 42 30 44 symmetry energy a_4 (MeV)

Finite nuclei: LDA

- Effect of s.r.c. appears to be A-independent suggests use of LDA, see Van Neck et al, PRC51,1800 (1994)
- LDA Suppose one knows nm density $n^{nm}(k, k_F)$ as a function of $k_F = (\frac{3\pi^2}{2}\rho)^{1/3}$
- naive LDA $n_A(k) = \int dR n^{nm}(\rho(R), k)$ diverges for $k \to 0$
- improved LDA: apply to correlation part only $n_A(k) = n_A^{MF}(k) + \int dR \delta n_< (\rho(R), k) + \int dR \delta n_> (\rho(R), k),$ where $n_A^{MF}(k) = \int dR \int dr \exp(ikr) \sum_h \phi_h^*(r_1) \phi_h(r_2)$

spectral function in LDA: N=Z

refer to Van Neck et al, PRC 51 1800 (1994)

FIG. 5. Average spectroscopic factor for the valence hole

spectral functions in N>Z finite nuclei

(from Bozek, nucl-th/0311046)