Structure of Be and B isotopes using break-up reactions

Martin Freer – University of Birmingham

Greens function Monte Carlo

R. B. Wiringa, Steven C. Pieper, J. Carlson, and V. R. Pandharipande, Phys. Rev. C **62**, 014001 (2000)

Neutron-rich Beryllium Isotopes

Clustering in ground states of Boron Isotopes

AMD – Kanada En'yo, Horiuchi, et al., 1995

Experimental Probes?

Beams: ¹⁰Be, ¹¹Be, ¹²Be, ¹⁴Be and ¹⁴B 30.9, 41.7, 41.8, 34.4 and 40.8 MeV/nucleon 10^4 pps 50 pps Produced and separated using LISE3@GANIL

Particle Identification Spectra for M=2 events (with and without target).

Ex (MeV)	\mathbf{J}^{π}	Decay to	Decay to	Cross section
		⁸ Be gs	8 Be (2 ⁺)	(mb)
1.68	$1/2^{+}$	100%	~0	1.7
		<i>l=0</i>	<i>l</i> =2	
2.43	5/2-	7.5%	92.5%	7.3
		<i>l=3</i>	<i>l</i> =1	
2.8	1/2-	~100%	~0%	
		<i>l</i> =1	<i>l</i> =1,3	12.3
3.05	5/2+	~100%	~0%	
		<i>l</i> =2	l=0	
4.70	$(3/2^{+})$	13%		19.6
		<i>l</i> =2	l=0	
5.6	$(3/2^{-})$	<i>l</i> =1	<i>l=0</i>	37.5
6.4	$(7/2^{-})$	<i>l=3</i>	<i>l</i> =1	
6.8	$(9/2^+)$	<2%		39.2
		l=4	l=2	

Ex (⁸ Be)	Cross section (mb)
gs	8.0(0.4)
2.9 (2 ⁺)	21.6(1.1)
$2.9 (2^+)/5/2^- (^{9}\text{Be})$	7.3(0.3)

$$\frac{dN}{dE_n}(E_n) = A \{ kRP_l(kR) \}_{Be-n} \left[\frac{\sin^2 \beta_l}{kRP_l(kR)} \right]_{\alpha-\alpha}$$
$$R_{\alpha-\alpha} = 4.0 \text{ fm } l = 2$$
$$R_n = 4.35 \text{ fm } l = 1$$

Cocke and Christensen, NPA111 (1968)623

Fermi Break-up of ¹⁴Be

Summary

- Used break-up reactions to characterize clusterization of beryllium isotopes.
- Clustering does not change from ¹⁰⁻¹⁴Be
- Comparison of ¹⁴B and ¹⁴Be suggests may be increase in clustering in ¹⁴Be
- Opportunity for calculations of Be reactions.
- Extract spectroscopic information for ${}^{10}\text{Be} \rightarrow {}^{9}\text{Be} + n \rightarrow {}^{8}\text{Be} + 2n \rightarrow \alpha + \alpha + 2n$
- Indicates that core excitations (2⁺) are important and at ~30-40 MeV/nucleon neutron removal reactions are more complex than the direct knockout picture.