## Spin-orbit effects in knock-out reactions <br> Álvaro García Camacho <br> University of Surrey, UK

- The toy model
- The model
- Review of approximations related to the sizes of the nuclei
- Analysing powers
- Sensitivity to the neutron optical potential


## Toy model for tails



Toy model


The core deliveries


Toy model



## The reaction

## Transferring to the continuum



## Cross-section

(A. Bonaccorso and D. M. Brink, Phys. Rev. C38 (1988), 1776, L. Lo Monaco and
D. M. Brink, J. of Phys. G11 (1985), 935...)

$$
\begin{aligned}
\frac{d \sigma}{d k_{1}} & =\frac{1}{\hat{l}_{1}^{2}}(16 \pi)^{2} \frac{\hbar}{m v k_{f}} \sum_{l_{2}} \frac{1-\left|S_{l_{2}}\right|^{2}+\left|1-S_{l_{2}}\right|^{2}}{4} \sum_{m_{1}}\left|Y_{l_{1} m_{1}}\left(\beta_{1}, \pi\right)\right|^{2} \\
& \times \sum_{m_{2}}\left|Y_{l_{2} m_{2}}\left(\beta_{2}, 0\right)\right|^{2} \int P_{e l}(b)\left|K_{m_{1}-m_{2}}(\eta b)\right|^{2} b d b
\end{aligned}
$$

- $\beta_{1,2}$ depend on binding energies, beam velocity and masses,
- neutron-target spin-orbit force has been neglected,
- $\eta^{2}=k_{1}^{2}+\gamma_{i}^{2}=k_{2}^{2}-k_{f}^{2}$.


## Typical energy ranges



## Momentum distributions

(A. Bonaccorso, Phys. Rev. C60 (1999), 054604,J. Enders et al., Phys. Rev. C65 (2002), 034318)


They are always asymmetric.

## Usual approximations

The normal assumption is that $\eta b$ is big

$$
K_{m_{1}-m_{2}}(\eta b) \simeq \sqrt{\frac{\pi}{2 \eta b}} e^{-\eta b}\left(1+\frac{\mu-1}{8 \eta b}+\frac{(\mu-1)(\mu-9)}{2(8 \eta b)^{2}}+\ldots\right)
$$

where $\mu=4\left(m_{1}-m_{2}\right)^{2}$ or

$$
\frac{d \sigma}{d k_{1}}=\int d \mathbf{b} \sum_{l_{2}} \frac{\hbar}{m v} \frac{1}{k}\left|C_{i}\right|^{2} \frac{\left|1-S_{l_{2}}\right|^{2}+1-\left|S_{l_{2}}\right|^{2}}{4} \frac{e^{\eta d}}{\eta d} \hat{l}_{2}^{2} M_{l_{1} l_{2}} P_{e l}(b)
$$

where

$$
M_{l_{1} l_{2}}=\frac{e^{-2 \eta b}}{\eta b} 2 \sqrt{\pi} \int d X e^{-X^{2}} P_{l_{1}}\left(A_{i}+B_{i} X^{2}\right) P_{l_{2}}\left(A_{f}+B_{f} X^{2}\right)
$$

(F. Stancu and D. M. Brink, Phys. Rev. C32 (1985), 1937, A. Bonaccorso, G. Piccolo and D. M. Brink, Nucl. Phys. A441 (1985), 555)

## Convergence

$$
{ }^{34} \mathrm{Si} \rightarrow{ }^{33} \mathrm{Si}+\mathrm{n}
$$

$$
{ }^{19} \mathrm{C} \rightarrow{ }^{18} \mathrm{C}+\mathrm{n}
$$




Suitability of the approximations depends on radii and binding energy, not on beam energy.

## Polarisation

- Some angular momentum states are favored in fragmentation reactions, therefore beams coming from these reactions will be polarised (H. Okuno et al, Phys. Lett. B335 (1994), 29, K. Matsuta et al, Phys. Lett. B281 (1992), 214, K. Asahi et al, Phys. Lett. B251 (1990), 488).
- Such a situation is handled by using mixed states, where there is a probability $p_{i}$ to find the initial nuclei in a state $\left|\Psi_{i}\right\rangle$, and therefore $<O>=\sum p_{i}<O>_{i}$.
- The initial state is thus described by a density matrix $\rho=\sum p_{i} \rho_{i}$.


## Analysing powers

The analysing power is a tensor whose components provide a relationship between the cross-sections for polarized and unpolarized beams.

$$
\frac{\sigma_{m}}{\sigma}=\left(1+\sum_{k q} t_{k q}^{m} T_{k q}\right)
$$

They can be related to the probability amplitude

$$
R_{n_{1} n_{1}^{\prime}}=\int \sum A_{n_{1}} A_{n_{1}^{\prime}}^{*}
$$

and since

$$
N_{k q}=\sum_{n_{1}, n_{1}^{\prime}} \widehat{k}\left(j_{1} n_{1} k q \mid j_{1} n_{1}^{\prime}\right) R_{n_{1} n_{1}^{\prime}}
$$

an expression for $T_{k q}=N_{k q} / N_{00}$ has been obtained.
For a spin-1 particles beam

$$
\frac{\sigma_{ \pm 1}}{\sigma}=\left(1+\frac{T_{20}}{\sqrt{2}}\right) \quad ; \quad \frac{\sigma_{0}}{\sigma}=\left(1-\sqrt{2} T_{20}\right)
$$

## How to get $T_{20}$

We need a general probability amplitude

$$
\begin{aligned}
& \widetilde{A}_{\sigma}^{j_{1}, n_{1}}(\mathbf{k}, \mathbf{K})=\sum_{j_{2} n_{2}} \sum_{m_{1} m_{2}} \sum_{\sigma^{\prime} \lambda} \sum_{L l_{2}}\left(l_{2} \lambda s \sigma \mid j_{2} n_{2}\right)\left(l_{1} m_{1} s \sigma^{\prime} \mid j_{1} n_{1}\right) \\
\times & \left(l_{2} m_{2} s \sigma^{\prime} \mid j_{2} n_{2}\right) i^{m_{1}-m_{2}} \hat{L} e^{2 i \delta_{L}} Y_{L m_{1}-m_{2}}(\widehat{\mathbf{K}}) K_{m_{1}-m_{2}}(\eta b)\left(1-S_{l_{2}}\right) \\
\times & \frac{Y_{l_{2} \lambda}^{*}(\widehat{\mathbf{k}})}{k}(-1)^{m_{1}} Y_{l_{1} m_{1}}\left(\beta_{1}, 0\right) Y_{l_{2} m_{2}}^{*}\left(\beta_{2}, 0\right)
\end{aligned}
$$

and then

$$
R_{n_{1} n_{1}^{\prime}}=k^{2} \int d \mathbf{k} d \mathbf{K} \sum_{\sigma} \widetilde{A}_{\sigma}^{j_{1}, n_{1}}(\mathbf{k}, \mathbf{K})\left(\widetilde{A}_{\sigma}^{j_{1}, n_{1}^{\prime}}(\mathbf{k}, \mathbf{K})\right)^{*}
$$

## Our results for $T_{20}$

We have calculated some numbers for stripping of ${ }^{17} \mathrm{C}$ at $60 \mathrm{MeV} / \mathrm{A}$, where an eikonal model calculation gives $T_{20}=0.23$
(R.C. Johnson and J.A. Tostevin, Analysing power of neutron removal reactions with beams of neutron-rich nuclei, in: 'Spins in Nuclear and Hadronic Reactions', Proceedings of the RCNP-TMU Symposium (Tokyo, Japan 26-28 October 1999), (ed H Yabu, T Suzuki and H Toki, World Scientific (Singapore), October 2000), 155-164)

| Approx. | $T_{20}$ |
| :--- | ---: |
| Oth order | -0.24 |
| 1st order | 0.10 |
| 2nd order | 0.24 |
| 3rd order | 0.28 |
| M-function | 0.18 |
| Bessel function | 0.32 |

## Examining the optical potential

(J. H. Dave and C. R. Gould, Phys. Rev. C28 (1983), 2212)


- We find a strong sensitivity to the diffuseness of the imaginary part.
- The energies are too big for the range of validity of the potential


## A new optical potential: JLM

- It uses Reid's hard core nucleon-nucleon interaction
- The interaction is folded with the nuclear matter density
- Its range of validity includes our region of interest
(Jeukenne et al., Phys. Rev. C16 (1977), 80, Bauge et al. Phys. Rev. C58 (1998), 1118.)


## Checking

Total reaction cross-section in ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p})^{9} \mathrm{Be}$

(W. Bauhoff et al. At. Dat. and Nuc. Dat. Tab. 35, 429 (1986).)

A new cross-section
${ }^{9} \mathrm{Be}\left({ }^{34} \mathrm{Si},{ }^{33} \mathrm{Si}\right) \mathrm{X}$


## How much are we leaving out?



It depends on binding energy, beam energy and width of the state

## $T_{20}$ with the new potential

| Approx. | previous $T_{20}$ | $T_{20}$ with JLM |
| :--- | :---: | :---: |
| Oth order | -0.24 | -0.23 |
| 1st order | 0.10 | 0.12 |
| 2nd order | 0.24 | 0.25 |
| 3rd order | 0.28 | 0.31 |
| M-function | 0.18 | 0.19 |
| Bessel function | 0.32 | 0.38 |

## Including the spin-orbit interaction

After some Racah algebra

$$
\begin{aligned}
& \frac{d \sigma}{d k_{1}} \propto \int d b b P_{e l}(b) \sum_{n_{1}} \sum_{j_{2} n_{2}} \sum_{m_{1} m_{2}} \sum_{\sigma^{\prime}} \sum_{l_{2}}\left(l_{1} m_{1} s \sigma^{\prime} \mid j_{1} n_{1}\right)\left(l_{2} m_{2} s \sigma^{\prime} \mid j j_{2} n_{2}\right) \\
& \times\left|K_{m_{1}-m_{2}}(\eta b)\right|^{2}\left|1-S_{l_{2} j_{2}}\right|^{2}(-1)^{m_{1}} Y_{l_{1} m_{1}}\left(\beta_{1}, 0\right) Y_{l_{2} m_{2}}^{*}\left(\beta_{2}, 0\right) \sum_{m_{2}^{\prime}} \sum_{\sigma^{\prime \prime}} \sum_{m_{1}^{\prime}} \\
& \times\left(l_{1} m_{1}^{\prime} s \sigma^{\prime \prime} \mid j_{1} n_{1}\right)\left(l_{2} m_{2}^{\prime} s \sigma^{\prime \prime} \mid j_{2} n_{2}\right)(-1)^{m_{1}^{\prime}} Y_{l_{1} m_{1}^{\prime}}\left(\beta_{1}, 0\right) Y_{l_{2} m_{2}^{\prime}}^{*}\left(\beta_{2}, 0\right) \\
& \text { (H. Hashim and D. M. Brink, J. Phys. G11 (1988), 107) }
\end{aligned}
$$

## Spin-orbit effects



In the $T_{20}$ calculation we get now 0.37 rather than 0.38

## Conclusions

- The validity of assumptions over radii has been examined, and they have been found to work better for cross-sections than for analysing powers,
- a more realistic optical potential has been used, whose effect seems to push the cross-section towards the region of momentum that is forbidden by the model,
- the effect of the spin-orbit force appears to be negligible in the calculation of both total cross-section and analysing powers.


