ABSOLUTE SPECTROSCOPIC FACTORS FROM RADIOACTIVE-BEAM EXPERIMENTS

Knockout Reactions in Inverse Kinematics

- Spectroscopic factors and *I*-value assignments
- Two-nucleon knockout reactions and correlations
- Absolute spectroscopic factors: What is the occupancy of physical nucleons in the states that make up the usual shell-model representations?

Collaborators (not complete)

T Aumann, D. Bazin, B.A. Brown, J. Enders, A. Gade, T. Glasmacher, V. Maddalena, W.F. Mueller, A. Navin, B. Sherrill, J.R. Terry, M. Thoennessen (National Superconducting Cyclotron Laboratory, Michigan State University), J.A. Tostevin (University of Surrey, U.K.)

Reviews:

P.G. Hansen and B.M. Sherrill, Nucl. Phys. A 693, 133-168 (2001)

P.G. Hansen and J.A. Tostevin, Annual Review of Nuclear and Particle Science 53, 219 (2003)

INNER SHELLS ARE REAL: THE (p,2p) KNOCKOUT REACTION

KNOCKOUT REACTION IN INVERSE KINEMATICS

In the sudden approximation, the momentum picked up by the residue is identical to that of the struck nucleon

The National Superconducting Cyclotron Laboratory Michigan State University

S-800 Magnetic Spectrograph with SeGA Segmented High-Purity Germanium Array

W.F. Mueller et al., Nucl. Instr. Meth. A 466 (2001) 492.

D. Bazin et al., Nucl. Instr. Meth. B 204 (2003) 629.

CALCULATION OF THE CROSS SECTION

The theoretical cross section for a given *j* channel is

$$\sigma_{exp} = R_s \left(\frac{A}{A-1}\right)^N C^2 S_j \ \sigma_{sp}(j, B_n)$$

where the quantity R_s is an empirical reduction factor describing the effect of contributions that go beyond effective-interaction theory

The single-particle cross sections for stripping is calculated in eikonal reaction theory:

$$\boldsymbol{s}_{sp}(j, B_n) = \frac{1}{2j+1} \sum_{m} 2\boldsymbol{p} \int b \, d \, b \, \langle jm \left| (1 - \left| S_N \right|^2) \left| S_C \right|^2 \right| jm > 0$$

with a similar expression for diffraction dissociation

J.A. Tostevin, J. Phys. G 25, 735 (1999)
K. Hencken, G. Bertsch and H. Esbensen, Phys. Rev. C 54, 3043 (1996)
P.G. Hansen and J.A. Tostevin, Ann.Rev. Nucl. Part. Sci. 53, 219 (2003)

Gamma rays from the ⁹Be(²⁸Mg, ²⁶Ne+g)X Reaction

Spectroscopic factors¹) S(P) in the twonucleon knockout reaction ⁹Be(²⁸Mg, ²⁶Ne)X

$$S = \sigma/\sigma_{22}$$

I^{π}	$E_{\rm exp}$	$E_{ m th}$	$S_{ m exp}$	$S_{\mathrm{un}}^{(\mathbf{a})}$	$S_{\mathrm{th}}^{(\mathbf{b})}$	
0^{+}	0.00	0.00	2.4(5)	1.33	1.72	Unit:
2^{+}	2.02	2.01	0.3(5)	1.67	0.51	$\sigma_{22} = 0.29 \text{ mb}$
4^{+}	3.50	3.66	2.0(3)	3	1.69	
2^{+}	3.7	3.45	0.5(3)	-	0.73	

(a) No correlations, (d_{5/2})⁴ subshell assumed
 (b) Full sd shell amplitudes combined with reaction amplitudes from 4-body eikonal model²)

(1) D. Bazin, B.A. Brown, C.M. Campbell, J.,A.Church, D.C. Dinca, J. Enders, A. Gade, T. Glasmacher, P.G. Hansen, W.F. Mueller, H. Olliver, B.C. Perry, B.M. Sherrill, J.R. Terry, J.A. Tostevin, Phys. Rev. Lett., 91, 012501 (2003)

(2) J.A. Tostevin et al., to be published

Preservation of the Magic Numbers at the Neutron Drip Line? The N=8 Shell Gap Disappears in ¹²Be

A. Navin et al., Phys Rev. Lett. 85, 266 (2000)

PARALLEL-MOMENTUM DISTRIBUTIONS IN THE LABORATORY FRAME FOR ¹¹Be RESIDUES

Eikonal theory of the parallel-momentum distribution: P.G. Hansen, Phys. Rev. Lett. 77, 1016 (1996) H. Esbensen, Phys. Rev. C 53, 2007 (1996)

SPECTROSCOPIC FACTORS IN THE REACTION ⁹Be(¹²Be,¹¹Be+g)X at 78 MeV/nucleon

Measured vs. Theoretical Spectroscopic Factors in Units of the Maximum Sum-Rule Value

P.G. Hansen and B.M. Sherrill, Nucl. Phys. A 693, 133-168 (2001)

J. Enders, A. Bauer, D. Bazin, A. Bonaccorso, B.A. Brown, T. Glasmacher, P.G. Hansen, V. Maddalena, K.L. Miller, A. Navin, B.M. Sherrill and J.A. Tostevin, Phys. Rev. C 65, 034318 (2002).

P.G. Hansen and J.A. Tostevin, Annual Review of Nuclear and Particle Science 53, 219 (2003)

¹²C and ¹⁶O on a carbon target: comparison with (e,e'p)

^{A-1} Z	E _B	s _{exp}	Rs	Rs	Rs
	A MeV	mb		Average	(e,e'p)
¹¹ B	250	65.6(26)	0.65(3)		
	1050	48.6(24)	0.50(3)	0.57(2)	0.51(3)
	2100	53.8(27)	0.56(3)		
¹¹ C	250	56.0(41)	0.54(4)		
	1050	44.7(28)	0.47(2)	0.49(2)	
	2100	46.5(23)	0.49(2)		
¹⁵ N	2100	54.2(29)	0.59(4)	0.59(4)	0.67(5)
¹⁵ O	2100	42.9(23)	0.48(3)	0.48(3)	

B.A. Brown, PGH, B.M. Sherrill and J.A. Tostevin, Phys. Rev. C 65, 061601 (2002) (recalculated with HF input for radii and sp wave functions)

Experimental data: D.L.Olson *et al.*, Phys. Rev. C. 28, 1602 (1983); J.M.Kidd *et al.*, Phys. Rev. C. 37, 2613 (1988); G. van der Steenhoven *et al.*, Nucl. Phys. A. 480, 547 (1988); M.B. Leuschner *et al.* Phys. Rev. C 49, 955 (1994)

QUENCHING FACTOR R_s FOR DEEPLY-BOUND PROTON AND NEUTRON STATES ($S_N = 10-19$ MeV)

B.A. Brown, PGH, B.M. Sherrill and J.A. Tostevin, Phys. Rev. C 65, 061601 (2002)
K. Miller et al, to be published
Data O,C D.L. Olson et al. Phys. Rev. C 28, 1602 (1983)
J.M. Kidd et al. Phys. Rev. C 37, 2613 (1988)

B.A. Brown, PGH, B.M. Sherrill and J.A. Tostevin, Phys. Rev. C 65, 061601 (2002)

J.Enders et al., Phys. Rev. C 67, 064301 (2003);

J.R. Terry et al., to be published

D.Cortina-Gil et al., Phys. Lett. B 529, 36 (2002) and references therein

THE ⁹Be(¹⁵C,¹⁴C₀₊)X REACTION

¹⁵C $\frac{1}{2}$ + S_n = 1.218 MeV s_{incl} = 140.2(46) mb (Average of two measurements)

Branch to 0⁺ 71.8(24)% s(0⁺) = 100.8(44) mb

Theoretical spectroscopic factor C²S(0⁺) = 0.983

J.R. Terry et al., to be published

$$\sigma_{exp} = R_s \left(\frac{A}{A-1}\right)^N C^2 S_j \ \sigma_{sp}(j, B_n)$$
 $R_{sp}^2 = \langle r^2 \rangle = \left(\frac{A}{A-1}\right) \langle r_{HF}^2 \rangle$

 $R_{sp} = 5.185$ fm (from Skyrme X Hartree-Fock) σ_{strp} = 62.1 mb $\sigma_{diff} = 34.5 \text{ mb}$ $\sigma_{Cou} = 2.9 \text{ mb}$, hence $\sigma_{sp} = 99.4 \text{ mb}$

 $\delta\sigma_{sp}/\sigma_{sp} = 0.44\delta R_{sp} - 0.04\delta a - 0.3\delta R_C - 0.3\delta R_T$

 $R_{\rm s} = 0.90(4)(5)$

QUENCHING FACTOR *R*_s FOR PROTON AND NEUTRON STATES

B.A. Brown, PGH, B.M. Sherrill and J.A. Tostevin, Phys. Rev. C 65, 061601 (2002)
J.Enders *et al.*, Phys. Rev. C 67, 064301 (2003)
A. Gade *et al.*, to be published
K. Miller *et al.*, to be published
J.R. Terry *et al.*, to be published

THE N=14 NUCLEUS ³²Ar: ASYMMETRIC FERMI SURFACES AT THE PROTON DRIP LINE

 $S_n\,$ and also $S_p\,(^{31}\text{Ar})$ from mirror nucleus with Coulomb correction: B.J. Cole, Phys. Rev. C 58, 2831 (1998)

³¹Ar: REACHING THE PROTON DRIP LINE

MOMENTUM DISTRIBUTION AND CROSS SECTION 31Ar

Alexandra Gade et al., to be published

$$\sigma_{exp} = 10.4(13) \text{ mb}$$

 $R_{\rm s} = 0.24(4)(4)$

RADIAL NUMBER DISTRIBUTIONS OF THE *d*_{5/2} PROTON IN ³²Ar AND OF PROTONS AND NEUTRONS IN ³¹Ar

CALCULATION OF THE SINGLE-PARTICLE CROSS SECTIONS FOR ²²O AND ³²Ar

Cross section density distribution	ons (mb) for <i>l</i> e ributions	=2 calculated assum	ning
(p+n) _{HF}	matter _{HF}	Gaussian+rms	
²² O 22.3	22.3	20.6	
³² Ar 9.9	10.0	9.7	

THE ⁹Be(²²O,²¹O)X REACTION

²⁰ O · 5/2+	+ n 3.81 3.15	C ² S 0.14	Sn = 6.85(6) MeV Measured inclusive cross section GANIL ^{a)} 51 MeV/nucleon: 120(14) mb GSI ^{b)} 938 MeV/nucleon: 70(9) mb
3/2+	2.19	0.03	<i>R_s</i> = 0.70(6)
1/2+	1.33	0.23	
<u>5/2+</u>	0.00	5.22	a) E. Sauvan et al. Phys. Lett B 491,1
21)		(2000)

b) T. Aumann and B. Jonson, personal communication (2004)

QUALITATIVE ESTIMATE OF CONTRIBUTIONS FROM SHORT-RANGE INTERACTIONS^{a)}

S. Fortier et al., Phys. Rev. C 39, 82 (1989)

d²o/dΩdE (mb/sr.MeVI

COMPARISON WITH THEORETICAL SPECTROSCOPIC FACTORS OBTAINED BY THE VARIATIONAL MONTE-CARLO METHOD^a)

The quenching factors are in units of the *p*-shell effective-interaction spectroscopic factor^{b)} (A/A-1)*C²S

Initial State	Final State(s)	R _s (VMC)	R _s (exp)	Method
⁷ Li(3/2 ⁻ ,1/2)	⁶ He(0++2+,1)	0.60	0.58(5)	(e,e'p) ^{c)}
⁷ Li(3/2 ⁻ ,1/2)	⁶ Li(0 ⁺ ,1)	0.60	-	
⁷ Li(3/2 ⁻ ,1/2)	⁶ Li(1 ⁺ ,0)	0.77	-	
⁸ B(2+,1)	⁷ Be(3/2 ⁻ ,1)	0.82	0.86(7)	Knockout
⁹ C(3/2 ⁻ ,3/2)	⁸ B(2 ⁺ ,1)	-	0.82(6)	Knockout

- a) S.C. Pieper and R.B Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001); R. B. Wiringa, personal communication.
- b) B.A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001).
- c) L. Lapikás, J. Wesseling and R.B. Wiringa, Phys. Rev. Lett. 82, 4404 (1999)

CONCLUDING REMARKS

Structure of nuclei

Knockout reactions in inverse kinematics are a powerful tool for identifying single-particle structure. Two-nucleon knockout has been shown to be a direct reaction for nuclei away from the stability line. It can give information on two-nucleon correlations in the wave function.

Foundations of the shell model

Experiments on drip-line nuclei, an option that is unique to a rare-isotope accelerator, suggest that the absolute occupancies of single-particle orbitals depend strongly on structure and nucleon separation energy.

