Nucleon knockout reactions on ^{3,4}He induced by virtual photons

Eddy Jans (NIKHEF-Amsterdam)

"ECT Workshop on Spectroscopic Factors" Trento, March 2-12, 2004

- introduction
- exclusive ^{3,4}He(e,e'p)
- semi-exclusive ⁴He(e,e'p)pnn
- exclusive ³He(e,e'pp) and ³He(e,e'pn)
- conclusions

Introduction

To describe properties of few-body systems in terms of baryon-meson d.o.f. a microscopic model is needed.

Hamiltonian:
$$H = -\frac{\hbar^2}{2m}\sum_i \nabla_i^2 + \sum_{i < j} v_{ij} (+\sum_{i < j < k} V_{ijk})$$

Need a realistic NN-interaction:

$$v_{ij} = \sum_{p=1,N} v^p(r_{ij}) O_{ij}^p$$

$$O_{ij}^{p} = 1, \sigma_{i}.\sigma_{j}, \tau_{i}.\tau_{j}, (\sigma_{i}.\sigma_{j})(\tau_{i}.\tau_{j}), S_{ij}, S_{ij}(\tau_{i}.\tau_{j}), (L.S)_{ij}, \dots$$

Realistic nuclear forces induce spatial, tensor and spin-(iso)spin correlations, some of which are only known phenomenologically.

two-nucleon density $\rho(\mathbf{r}_1, \mathbf{r}_2)$

Solve Schrödinger equation for 3N-system with Faddeev, VMC or GFMC.

Spectral function S(k,E)

non-correlated and correlated proton spectral function ⁴He

ATMS method (H. Morita)

4 March 2004

ECT* Workshop on s.f.

Investigate high-momentum components with electro-induced single-nucleon knockout reaction

- clean probe, i.e. (q, ω) of the virtual photon
- well-defined final state
- light target nucleus:
 - * initial and final state can be calculated precisely
 - * disturbing processes can be calculated reliably

exclusive ^{3,4}He(e,e'p)^{2,3}H reaction

I nvestigate strength at high missing momentum and high removal energies: semi-exclusive ⁴He(e,e'p)

Electron-induced two-nucleon knockout reactions to study initial and final-state correlations:

³He(e,e'pp) and ³He(e,e'pn)

(e,e'p) reaction

concept of (e,e'p) reaction in impulse approximation: virtual photon interacts with a single nucleon that subsequently is ejected

? =e-e'

$$\vec{q}$$
= \vec{e} - \vec{e} '
 \vec{p}_m = \vec{q} - \vec{p} '
 E_m =e-e'- T_p - T_{A-1}

example E_m-spectrum of ³He(e,e'p) reaction

³He(e,e'p)²H reaction

Hall-A of Jefferson Lab:

6 GeV 100% duty factor electron beam

high-power cryogenic targets

two high-resolution magnetic spectrometers

focal-plane detection systems with various p.i.d. components

p_m-distribution of ³He(e,e'p)²H

experiment E89-044 (MIT-thesis of Marat Rvachev (2003))

> ω=837 MeV q=1500 MeV/c Q²=1.5 (GeV/c)²

data up to p_m =1000 MeV/c

9

p_m-distribution of ³He(e,e'p)²H

- large contributions from FSI and non-nucleonic currents at p_m > 400 MeV/c
 excess strength at p_m>800
- relativistic effects ??
- breakdown of mesonbaryon description ??

e': magnetic spectrometer QDQ p': segmented detector HADRON4

HADRON4 for proton detection

94 scintillators 134 PMs T_p = [67,195] MeV Ω =550 msr

determine: T_p and p.i.d. from generated light, angles with hodoscope

⁴He(e,e'p) experiment @ NIKHEF

E_m [MeV]

4 March 2004

ECT* Workshop on s.f.

Eddy Jans NI

15

p_m-dependence of ⁴He(e,e'p)³H

no zero/minimum observed in these data.

..... PWIA (v14+Urbana-VII) ----- +FSI -'-'-' +FSI +MEC ----- full

More complete dataset of E97-111 of JLab

K. van Leeuwe et al. PRL 80 (1998) 2543

ECT* Workshop on s.f.

semi-exclusive 4He(e,e'p)

scattering from a correlated pp/pn pair:

$$E_{m,ridge}(p_m) = E_{thr} + \frac{A-2}{A-1} \frac{p_m^2}{2M}$$

5° wide slices centered at γ_{pq} =35°, 50°, 60°, 70°, 80°, 89

4 March 2004

ECT* Workshop on s.f.

Eddy Jans N

summary of (e,e'p) on ^{3,4}He

- benchmark datasets for exclusive 3,4 He(e,e'p) up to very high p_m .
- signatures of scattering from a correlated nucleon-pair in semi-exclusive ⁴He(e,e'p).
- advanced structure calculations of few-body systems.
- calculation of reaction dynamics needs to be improved.
- relativity needs to be included.

uncorrelated wave function \Rightarrow in PWIA σ (e,e'NN)=0

If one nucleon of a correlated pair gets hits by the virtual photon, both will presumably be emitted.

Two kind of processes in two-nucleon knockout:

- via one-body current j₁: pp and pn initial-state correlations
- via two-body current j₂: MECs and ICs

Feynman diagrams of two-nucleon knockout

Every process has its specific sensitivity to T, q, ω and ϵ .

Unpolarized (e,e'NN) cross section is a function of 6 nuclear structure functions.

Disentangle the contributions via comparison of pp and pn-knockout under various kinematical conditions.

³He is chosen because continuum Faddeev calculations are available for various realistic NN-potentials.

reconstruct p_m and E_m from measured e', p_1' and $p_2' = E_m = \omega - T_1 - T_2 - T_{(A-2)}$

 $E_{m} \sim E_{exc}$ of (A-2) system

 $\vec{p}_{m} = \vec{q} - \vec{p}_{1} - \vec{p}_{2}$

³He: (A-2)=nucleon, so p_m is momentum of the (unobserved) nucleon in the final state.

in PWIA: -**p**_m = CoM momentum of the pair in the initial state.

23

³He(e,e'pp) experiment performed at AmPS (NIKHEF, Amsterdam) D. Groep et al., PRL 83 (1999) 5443 D. Groep et al., PR C63 (2000) 014005

³He(e,e'pn) experiment performed at A1 (MAMI, Mainz)

NIKHEF, Amsterdam, The Netherlands Institut für Kernphysik, Mainz, Germany Physikalisches Institut, Tübingen, Germany University of Glasgow, Glasgow, Scotland

measurements at the same central values of (w,q)

experimental tools

- high duty-factor electron beam
- cryogenic target
- magnetic spectrometers for electron detection
- large solid angle scintillator detectors, with a high degree of segmentation, for proton & neutron detection

4 March 2004

A1-hall at MAMI

electron-proton time difference spectrum

time and energy of proton are uncorrelated

electron-neutron time difference spectrum

time and energy of neutron are correlated

coincidence times and accidental subtraction procedures

- three-fold uncorrelated singles
- real-(e'p₁) + accidental n (3 ns)
- real-(e'p₂) + accidental p_1 (3 ns)
- real-(p₁p₂) + accidental e' (3 ns)

4 March 2004

ECT* Workshop on s.f.

E_m spectra of ³He(e,e'pn) @ MAMI

4 March 2004

ECT* Workshop on s.f.

determination of experimental differential cross section

• luminosity

eff

- dead-time effects
 - by means of (MC) simulations:
 - detection volume in phase space
 - hadronic interactions of proton
 - position-dependent neutron detection efficiency

calculations of ³He(e,e'NN) cross section

continuum Faddeev calculations of the Bochum group (J. Golak et al., Phys. Rev. **C51** (1995) 1638)

Employ realistic NN-interactions like Bonn-B, CD-Bonn, V18, Nijmegen93,.

- parameter-free model
- calculate wave functions of ²H and ³He.
- include NN-rescattering up to all orders
- one-body current operator
- MECs included via a π and ho exchange current operator (Schiavilla&Riska)

•
$$\Delta$$
-current in, static,
low-energy approximation $j_{p\Delta} \cong \frac{f_p^2}{(m_\Delta - m_N)} G_M^V(q) [....] x q$

Here: Bonn-B potential, $j \le 3$, $J \le 15/2$

 $\sigma_{\rm theo}$ evaluated over 2.5 x 10^6 grid points /kinematics in 5-D space of detected hadrons at the central value of (q, ω)

Kinematic coverage

³He(e,e'pp) @ AmPS

³He(e,e'pn) @ MAMI

(1 zm² = 10⁻¹⁴ barn)

at low p_m the ³He(e,e'pp) reaction is dominated by direct two-proton emission induced by a one-body hadronic current.

w dependence

q=375 MeV/c

 $\frac{\text{data}}{\text{theory}} = \frac{1.0 \text{ for } \omega^2 20 \text{ MeV}}{2.3 \text{ for } \omega^2 280 \text{ MeV}}$

³He(e,e'pp)

 $\frac{\text{data } @ (w = 220)}{\text{data } @ (w = 300)} \approx 2(\pm 1)$

Conclusions of ³He(e,e'pp) and ³He(e,e'pn)

- at low p_m the ³He(e,e'pp) reaction seems well suited to study initial-state correlations.
- at 200<p_m<350 MeV/c continuum Faddeev calculations underestimate the ³He(e,e'pp) data by up to a factor 3.
- this discrepancy increases for increasing ω (170 \rightarrow 290 MeV).
- ³He(e,e'pn) is harder but feasible: at low p_m the measured cross sections are about a factor 2 smaller than predicted.
- q-dependence of ³He(e,e'pn) differs from that of pp-knockout.
- measured 3 He(e,e'pn) cross section is decreasing between ω =210 and 320 MeV.
- finalize the ³He(e,e'pn) analysis.
- the role of the Δ -resonance seriously needs theoretical attention. (i.e. Hannover and Bochum group).
- (e,e'pN) data need to be measured with good statistics over a wide kinematic range and then sorted in narrow bins in many variables (q, ω , p_m, γ_1 , p_{ij}...)

