Influence of the Dirac Sea on Nucleon Electromagnetic Knockout

James J. Kelly

University of Maryland

J.J. Kellv

ECT2004

Spinor Distortion

- p.1/3

Outline

RDWIA model

- spinor distortion, projection on positive-energy states
- effective momentum approximation (EMA)
- $^{16}{\sf O}(e,e'p)$
 - sensitivity of A_{LT} to spinor distortion and sea
 - model dependence
 - spectroscopic factors
- ${}^{12}\mathbf{C}(e, e'p)$ for $Q^2 > 0.6$
 - sensitivity of A_{LT} to spinor distortion and sea
 - model dependence
 - transparency and spectroscopic factors
- Conclusions

Model

- ϕ : overlap with single-nucleon knockout state represented by Dirac bound state
- χ : FSI represented by Dirac distorted waves
- Γ : electromagnetic current represented by one-body operator with energies placed on shell

RDWIA one-body current

$$\mathcal{J}^{\mu} = \int d^{3}r \, \exp\left(i\boldsymbol{t}\cdot\boldsymbol{r}\right) \langle \bar{\Psi}(\boldsymbol{p}',\boldsymbol{r}) | \Gamma^{\mu}(\boldsymbol{p}',\boldsymbol{p}'-\boldsymbol{q}) | \phi(\boldsymbol{r}) \rangle$$
$$\boldsymbol{t} = \frac{E_{B}}{W} \boldsymbol{q} \text{ includes recoil correction}$$
$$\boldsymbol{p}_{m} = \boldsymbol{p}' - \boldsymbol{q} \text{ using external kinematics}$$
$$\phi_{\kappa m}(\boldsymbol{r}) = \begin{pmatrix} f_{\kappa}(r)\mathcal{Y}_{\kappa m}(\hat{r}) \\ ig_{-\kappa}(r)\mathcal{Y}_{-\kappa m}(\hat{r}) \end{pmatrix}$$

$$\Psi(\boldsymbol{p}, \boldsymbol{r}) = \begin{pmatrix} \psi(\boldsymbol{p}, \boldsymbol{r}) \\ \zeta(\boldsymbol{p}, \boldsymbol{r}) \end{pmatrix}$$
$$[\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta(m+S) + (V-E)] \Psi = 0$$

J.J. Kellv

ECT2004

2^{nd} -order Dirac equation

$$\left[\nabla^2 + k^2 - 2\mu \left(U^C + U^{LS}\boldsymbol{L}\cdot\boldsymbol{\sigma}\right)\right]\xi = 0$$

$$U^{C} = \frac{E}{\mu} \left[V + \frac{m}{E}S + \frac{S^{2} - V^{2}}{2E} \right] + U^{D}$$

$$U^{D} = \frac{1}{2\mu} \left[-\frac{1}{2r^{2}D} \frac{d}{dr} (r^{2}D') + \frac{3}{4} \left(\frac{D'}{D}\right)^{2} \right]$$

$$U^{LS} = -\frac{1}{2\mu} \frac{D'}{rD}, \qquad D = 1 + \frac{S - V}{E + m}$$

$$\psi = D^{1/2}\xi, \qquad \zeta = \frac{\boldsymbol{\sigma} \cdot \mathbf{p}\psi}{E + m + S - V}$$

J.J. Kelly

ECT2004

$$J^{\mu} = \tilde{\Omega}_{c}(\boldsymbol{p}', r)\gamma^{0}\Gamma^{\mu}\Omega_{b}(\boldsymbol{p}_{m}, r)$$
$$\Omega_{\alpha}(\boldsymbol{p}, r) = \left(\frac{1}{\frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{(E_{\alpha} + m)D_{\alpha}(r)}}\right)D_{\alpha}^{1/2}(r)$$
$$D(r) = 1 + \frac{S(r) - V(r)}{E + M} \sim 0.6$$

- Darwin nonlocality factor reduces amplitude \implies increases fitted spectroscopic factor. Effective at low p_m .
- Dynamical enhancement of lower component breaks factorization, alters A_{LT} and recoil polarization. Increases with p_m .

Unraveling effects

Positive-energy projection:

$$J^{\mu} \longrightarrow \Lambda^{\dagger}_{+}(\boldsymbol{p'}) J^{\mu} \Lambda_{+}(\boldsymbol{p}) , \qquad \Lambda_{+}(\boldsymbol{p}) = \frac{m + \not p}{2m}$$

eliminates contributions from Dirac sea (Udías *et al.*)
 noSV

$$\Omega(\boldsymbol{p},r) \longrightarrow \left(\begin{array}{c} 1\\ \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E+m} \end{array}\right) D_{\alpha}^{1/2}(r)$$

- EMA: p in spinors uses kinematics instead of operator
- EMA-noSV: eliminates dynamical enhancement of lower component but retains suppression of upper component

$J_{\rm eff}^{\mu}$ variations

 J_{eff}^{μ} is a 2 × 2 operator on Pauli spinors from relativized Schrödinger equation that incorporates relativistic dynamics without p/m expansions.

- EMA-noSV
 - includes Darwin suppression
 - no Gordon ambiguity
 - factorizes except for spin-orbit FSI
- EMA-SV
 - includes dynamical enhancement of lower components
 - breaks factorization even without FSI (Donnelly et al.)

Without EMA, $2 \times 2 J_{\text{eff}}^{\mu}$ completely equivalent to $4 \times 4 J^{\mu}$.

Momentum distribution

- ▶ $j = \ell 1/2$ more sensitive to Dirac sea (Caballero *et al.*)
- \bullet sensitivity increases with p_m
- interference between upper and lower components emphasizes sea
- EMA-noSV similar to positive-energy projection

Spectroscopic factors: ${}^{16}O(e, e'p)(1p)^{-1}$

- Model dependence smaller at high Q^2 , but still $\sim \pm 15\%$.
- No clear trend with Q^2 .

EMA Spinor Distortion

Gao et al., JLab
$$Q^2 = 0.8$$

$$A_{LT} = \frac{\sigma(\phi = 0) - \sigma(\phi = \pi)}{\sigma(\phi = 0) + \sigma(\phi = \pi)}$$

- A_{LT} most sensitive to bound-state spinor distortion
- variations due to bswf, om, gauge/Gordon ambiguities smaller

ECT2004

Accuracy of EMA

- EMA offers qualitative description of A_{LT} enhancement for modest p_m
- breaks down for large p_m in oscillatory region
- more accurate for $1p_{3/2}$ than for $1p_{1/2}$ where there is a discrepancy at low p_m

ECT2004

Contribution of Dirac Sea

- no SV \approx projection
- bound > continuum projection
- sea contribution greater for 1p_{1/2}, especially at small p_m
- effect at low p_m is subtle, but data support sea contribution

Gordon Ambiguity

 Γ_1 most, Γ_3 least sensitive to spinor distortion

J.J. Kellv

ECT2004

Gauge Ambiguity

0.0 $\overset{\text{A}}{\vdash}$ smaller than in -0.5 1p_{1/2} **NRDWIA** small for $p_m \lesssim 300$ Coulomb 0.0 Landau MeV/c Weyl ${\mathbb A}_{\mathsf{LT}}$ Weyl disfavored ٩ -0.51p_{3/2} 100 200 300 0 400 [MeV/c]

ECT2004

Spinor Distortion

p_m

 ${}^{16}O(e, e'p)$ at $Q^2 = 0.8$ (GeV/c)²

- both models provide slight improvement to cross section
- neglect of dispersion in momentum of lower component most important for large pm

ECT2004

 ${}^{16}O(e, e'p)$ at $Q^2 = 0.8$ (GeV/c)²

- noSV similar to positive-energy projection
- contribution of sea small for cross section, but amplified in A_{LT}

ECT2004

Q^2 dependence of A_{LT} for ${}^{16}O(e, e'p)$

J.J. Kellv

ECT2004

$^{12}C(e,e^{\prime}p)$ at JLab

- Motivation: measure nuclear transparency, looking for color transparency
- Sufficient resolution to almost separate 1p and 1s shells for ¹²C ⇒ fit

$$\sigma_{\rm red} = S_{1p}\sigma_{\rm red}(1p_{3/2}) + S_{1s}\sigma_{\rm red}(1s_{1/2})$$

to bins centered on shells and to semi-inclusive yield

Sufficient p_m coverage to determine (Dutta *et al.*)

$$a_{LT} = \frac{\sigma_{\text{red}}(\phi = 0) - \sigma_{\text{red}}(\phi = \pi)}{\sigma_{\text{red}}(\phi = 0) + \sigma_{\text{red}}(\phi = \pi)}$$

 \square a_{LT} vanishes for factorized calculation

Reduced cross section ${}^{12}C(e, e'p)$

Effect on cross section subtle!

J.J. Kelly

ECT2004

1p,1s contributions to ${}^{12}C(e, e'p)$

1p contrib. to *s*-bin may simulate continuum

J.J. Kelly

ECT2004

Q^2 dependence of a_{LT} for ${}^{12}C(e,e'p)$

SV effect reduced at high Q^2 . Sea small but visible.

J.J. Kellv

ECT2004

Spinor Distortion

-p.22/30

FSI

 a_{LT} small without FSI. U^{LS} may be too strong for $Q^2 = 1.8$.

Dirac phenomenology

Little ambiguity for $p_m \leq 250 \text{ MeV/}c$.

J.J. Kellv

ECT2004

Gordon ambiguity for ${}^{12}C(e, e'p)$

ECT2004

Gordon ambiguity for ${}^{12}C(e, e'p)$

J.J. Kellv

ECT2004

Spinor Distortion

- p.26/3

Gordon ambiguity for ${}^{12}C(e, e'p)$

Reduced at large Q^2 , favors $\overline{\Gamma}_2$.

J.J. Kellv

ECT2004

Spinor Distortion

- p.27/3

Transparency for (e, e'p)

Experimental definition:

$$\mathcal{T}_{exp} = \frac{\int_{V} d^{3} p_{m} dE_{m} \ \sigma_{e,e'p}}{f \sum_{\alpha} \int_{V} d^{3} p_{m} dE_{m} \ K \rho_{\alpha}(p_{m}) S(E_{m}) \sigma_{ep}}$$

- depletion by short-range correlations $\implies f \approx 0.90$
- simulated yield assumes factorization for both $S_{\alpha}(p_m, E_m)$ and reaction mechanism

RDWIA calculation:

$$\mathcal{T}_{\perp} = \frac{\sum_{\alpha} \int dp_m p_m \ \sigma_{\mathsf{RDWIA}}(p_m, E_{\alpha})}{\sum_{\alpha} \int dp_m p_m \ \sigma_{\mathsf{RPWIA}}(p_m, E_{\alpha})}$$

Transparency for ${}^{12}C(e, e'p)$

- fixed E_0 , T_p
- EDAD1, NLSH, CC2
- spinor distortion small
- Darwin factor reduces
 T_{\perp} by 11–6% (relative)
 for $0.6 < Q^2 < 1.8$

- fitted $S_{1s+1p} \approx 1 \Longrightarrow f\mathcal{T}_{exp} \approx \mathcal{T}_{\perp}$.
- \bullet $\approx 10\%$ deficit consistent with neglect of continuum

 ${}^{16}O(e, e'p)$ continuum at $Q^2 = 0.8$

Importance of continuum increases with p_m .

Nearly full s-shell occupancy (Ryckebusch et al.)

J.J. Kellv

ECT2004

Scale factors for ${}^{12}C(e, e'p)$

- om variations negligible
- \approx full IPSM in 10 < E_m < 80 MeV
- depletion by short-range correlations =>
 - potentials too absorptive, or
 - $\approx 10\%$ multinucleon continuum, or
 - S too large with NLSH wave functions

J.J. Kellv

ECT2004

 $S_{lpha}(Q^2)$?

Lapikàs *et al.* claim transition in quasiparticle response near $Q^2 \sim 0.6$, but

- larger constant S_{α} in 12 C for $0.6 < Q^2 < 1.8$
- ${}^{16}\mathbf{O}(e, e'p)$ for $0.2 < Q^2 < 0.8$
 - S_{α} consistent with Q^2 independence
 - $\int_{12}^{27} dE_m S_{1p}(E_m) \approx 0.65(9) S_{\text{IPSM}}$
 - $S_{1s}/S_{\rm IPSM}\sim 1$

ECT2004

Problems at low Q^2

- parallel kinematics far off shell: $1.5 \gtrsim x_B \gtrsim 0$
- \checkmark large range of Q^2
- fit to $\rho(p_m)$ can shift
 DWIA errors into bswf
- cannot see enough of s-shell for reliable normalization
- WS fit to $T_p = 70$ MeV data gives poor decription of high Q^2 data

ECT2004

Test NIKHEF WSWF at large Q^2

- rather poor fits, no s contibution to $E_m < 25 \text{ MeV}$
- RDWIA better at high $Q^2 \implies$ these WSWF unreliable

J.J. Kellv

ECT2004

High Q^2 fits with NIKHEF WSWF

- p shell reduced by $\approx 25\%$
- $s \text{ in } 30 < E_m < 50 \text{ re-duced by} \approx 50\%$

Better approach:

- **RDWIA**, constant $(\omega, \vec{q}), \text{ large } Q^2 \text{ to}$ evaluate bswf, adjust if
 necessary
- use low Q² discrepancies to study reaction mechanism and off-shell current

Conclusions

- EMA
 - noSV similar to positive-energy projection
 - dominant defect is neglect of dispersion in lower component
- A_{LT} sensitive to relativistic spinor distortion
 - SV effect most important for bound state
 - sea contribution small but visible for $1p_{1/2}$ at low p_m
 - Gordon ambiguity reduced at high Q^2
 - Gauge and om ambiguities negligible for modest p_m
- spectroscopic factors
 - \checkmark model dependence remains $\sim\pm15\%$
 - are low Q^2 problems experimental or failure of reaction model?