ECT Trento 2004 Workshop on Spectroscopic Factors

Spectroscopic Factors from (e,e'p) reactions

L. Lapikás

Amsterdam

1. Introduction

some early (e,e'p) results, spectroscopic factors effective mass, theoretical approaches

- 2. Beyond Mean Field Theory Variational Monte Carlo, ⁷Li(e,e'p)
- 3. Towards larger momentum ²⁰⁸Pb(e,e'p), relativistc effects
- 4. Towards deeper energies

²⁰⁸Pb(e,e'p), Rescattering, MEC

5. Towards higher Q²

¹²C(e,e'p), FSI, Transparencies

6. Summary and Conclusion

Introduction Some early (e,e'p) results

NIKHEF RESULTS

Spectroscopic strength with the reaction (e,e'p)

seventies : pioneering experiments Frascati, Tokyo, Saclay

eighties : high res. NIKHEF (e,e'p) program for nuclei A=2-209 • spectral function at low (E_m, p_m)

Momentum distributions of valence orbits

nineties –present : NIKHEF/Mainz/Bates also 2N knockout

Present : JLAB towards higher Q², larger p_m, E_m

Results for valence orbits in closed-shell nuclei:

Curves scaled by about 0.65 wrt. mean field theory !!

Explanation : Effect of long-range and short-range correlations

p2

Introduction Effective mass

Introduce an effective mass in the overlap function to account for correlations

 $m^{*}(r,E) / m = 1 - d_{dE} V(r,E) \rightarrow \langle \Phi | exp(i p_{m} r) m^{*}(r,E) / m | \Phi \rangle$

------ Experimental determination of the effective mass ------

Beyond MFT -> VMC ⁷Li(e,e'p)

Full calculation

- Variational Monte Carlo (VMC)
- V = AV18 / UIX

(Argonne 2-nucleon + Urbana 3-nucleon interaction)

Done for few- body systems

• Now available for A = 6, 7, 9

Technique

• Minimize and diagonalize $\langle \Psi_{v} | H | \Psi_{v} \rangle$

- Trial wave function $\Psi_{V} = [1 + \Sigma U_{ijk}] [S \Pi (1 + U_{ij})] \Psi_{J}$
- Two/three body correlation functions U_{ii}, U_{iik}
- $< \Psi_{v}$ (⁶He^{*}) | a(p_m) | Ψ_{v} (⁷Li) > measured in (e,e'p)

	MFT (1p)	VMC (1p+1f)
3/2 ⁻ ->0+ 3/2 ⁻ ->2+	0.59 0.40	0.41 0.19
Sum	0.99	0.60

Pudliner, Pandharipande, Carlson, Wiringa, Pieper, Forest

Pudliner, Pandharipande, Carlson, Wiringa, Pieper, Forest

Compare MFT and VMC overlap wave functions

- normalize both overlaps to 1
- Choose MFT rms radii equal to VMC rms radii

⁷Li(e,e'p) Spectroscopic Strength

	spectroscopic strength		
	0+	2+	0 ⁺ + 2 ⁺
Ехр	0.42(4)	0.16(2)	0.58(5)
VMC	0.41	0.19	0.60
MFT	0.59	0.40	0.99

- for < 6He | 7Li > overlap VMC explains exactly measured 40% reduction w.r.t. MFT
- for successful description of (e,e'p) momentum distributions (size and shape) full correlations necessary in nuclear-structure calculations

Towards deeper energies ²⁰⁸Pb(e,e'p)

²⁰⁸Pb(e,e'p) Experiment

Experiment @ AmPS :

Measured ²⁰⁸Pb(e,e'p) in spectral function range {E_m,p_m }={0-100 MeV, 0-270 MeV/c}

- Difficulties above E_{2N} (16 MeV) : MEC and ∆-excitation may contribute Rescattering (e,e'N) (Np) may contribute
- Data measured at two beam energies
 --> study MEC

Calculate experimental spectral functions $S^{exp}(E_m,p_m) = \sigma^{exp} / K \sigma_{ep}$

Model spectral functionion $n_{\alpha}(E_{\alpha})$ fractional occupations $\rho_{\alpha}(p_m)$ distorted momentum distributions: CDWIAWoods-Saxon MFT wave functions ,
optical Model Potential that describes $^{208}Pb(p,p)$ at $T_p = 161$ MeV,
 2^{nd} order eikonal Coulomb distortion
non-relativistic σ_{ep} P_{\alpha}(E_m)Breit-Wigner shape for energy distributions, two fragments
 $\Gamma_{\alpha}(E_m)$ level width depends on distance to E_{F} (Brown-Rho)

$$S(E_{m},p_{m}) = \sum_{\alpha \in F} n_{\alpha}(E_{\alpha}) \rho_{\alpha}^{CDWIA}(p_{m}) P_{\alpha}(E_{m})$$

$$P_{\alpha}(E_{m}) = \frac{\Gamma_{\alpha}}{2\pi \left((E_{m} - E_{\alpha})^{2} + \Gamma_{\alpha}^{2} \right)} \quad \text{with} \quad \Gamma_{\alpha}(E_{m}) = \frac{a(E_{m} - E_{F})^{2}}{b^{2} + (E_{m} - E_{F})^{2}}$$

First calculate contributions due to : 1. MEC 2. Rescattering

NI

²⁰⁸Pb(e,e'p) MEC contributions

NI

L. Lapikás

²⁰⁸Pb(e,e'p) Spectroscopic Strength

From model fits :

- strengths of all orbits
- for deep lying orbits spin-orbit partners taken together
- combined information from this experiment (AmPS -1997) earlier one (MEA -1988)

Towards higher Q² ¹²C(e,e'p)

¹²C(e,e'p) comparison of low and high Q²_data

- 1) determine accurate wave functions for the 1p and 1s strength : Consistent reanalysis of world's ¹²C(e,e'p) 1p + 1s data
- 2) establish 1p and 1s spectroscopic factors
- **3)** compare with SLAC and TJNAF data at high Q²

¹²C(e,e'p) at low Q² Fits to 1p and 1s world data

1p momentum distributions

NI

p19

TRENTO 2004

¹²C(e,e'p) SLAC data compared to Glauber calculations

SLAC NE18 data at Q²= 1.1 (GeV/c)² Red Curves : with S_{1p} = 4 , S_{1s} = 2 (full shells) Green Curves : add T(ransparency) to account for FSI (Frankfurt, Strikman, Zhalov) _____ Glauber T_{1p} =0.6-0.7, T_{1s} = 0.5-0.6 (p_m dependent!)

Fit Glauber curves to data : \Rightarrow S_{1p} = 3.56±0.12, S_{1s} = 1.50±0.08

Summed Spectroscopic Strength is Q² dependent !

At Q^2 = 1.1 (GeV/c)² S_{1p} + S_{1s} = 5.06 ± 0.15 (84%) At Q^2 = 0.2 (GeV/c)² S_{1p} + S_{1s} = 3.48 ± 0.10 (58%)

¹²C(e,e'p) Q² dependence of Spectroscopic Strength

NI

Summary

RESULTS

Exp. Spectroscopic strength at low E_m ~ 60% of IPSM
 Exp. Spectroscopic strength for deeplying orbits ~ 80% of IPSM
 Wave functions with correlations explain this (VMC, NM)
 High-momentum components seen (not very accurate, interpretation?)

For a further interpretation these subjects would be nice to have (some speakers will show first results!)

