

Study of the ground state wave function of ⁶He via 2n transfer reaction ⁶He(p,t) α

- ⁶He benchmark nucleus for halo phenomenon and 3-body correlations

- previous work: Elastic scattering, Charge exchange reaction, σ_R M.D. Cortina-Gil et al., Phys. Lett. B 371 (96) 14 M.D. Cortina-Gil et al., Nucl. Phys. A 641 (98) 263 A. de Vismes et al, Phys. Lett. B 505 (01) 15 A. de Vismes et al., Nucl. Phys. 703 (2002) 573

- Present work : Study of the ground state wave function of ⁶He via ⁶He(p,t) α reaction at 25 MeV/nucleon. Contribution of α +2n and t+t configurations.

P. Roussel-Chomaz, GANIL

Collaboration

Ganil

- C. Demonchy
- L. Giot
- W. Mittig
- P. Roussel-Chomaz
- H. Savajols

Uni. of Surrey

I. Thompson N. Timofeyuk

Collège de France

S. Pita

Cracow

- R. Wolski
- P. Roussel-Chomaz, GANIL

SPhN Cea/Saclay

- N. Alamanos
- F. Auger
- C. Jouanne
- V. Lapoux
- L. Nalpas
- E.C Pollaco
- A. Gillibert
- J-L Sida
- F. Skaza

Dubna

- S. Stepantsov
- Rodin
- A. Fomichev
- S. Sidortchuk
- G. Ter Akopian

Warsaw

- K. Rusek
- Uni. Santiago de Compostela
 - M-D. Cortina-Gil
 - J. Fernandez

Uni. of Ioannina

A. Pakou

Ground state wave function of ⁶He

M. Zhukov et al. Phys. Rep. 231 (1993) 151

- •⁶He binding energy well reproduced with a t+t configuration A. Csoto, PRC 48 (1993) 165
- Microscopic calculations $< {}^{6}\text{He} | {}^{4}\text{He} + n + n > 1.10 - 1.56$ $< {}^{6}\text{He} | t + t > 0.44 - 1.77$

Yu. F. Smirnov, PRC 15 (1977) 84 K. Arai et al, PRC 59 (1999) 1432

P. Roussel-Chomaz, GANIL

Analogy between ⁶Li and ⁶He

M.F Werby et al, PRC 8 (1973) 106

P. Roussel-Chomaz, GANIL

• ⁶Li: ⁶Li(p, ³He) α clusters: α +d, ³He+t ⁶Li + p \rightarrow ³He + α \rightarrow ³He + α $(\alpha + d) + p$ $(^{3}\text{He+} + p \rightarrow \alpha + ^{3}\text{He})$ • ⁶He: ⁶He(p,t) α

clusters: α + 2n, t+t ??

⁶He(p,t)⁴He transfer reaction

Spectroscopic Factors, Trento, March 2004

P. Roussel-Chomaz, GANIL

⁶He(p,t)⁴He transfer reaction

P. Roussel-Chomaz, GANIL

⁶He(p,t)⁴He transfer reaction

$$(^{4}\text{He} + 2n) + p \rightarrow \alpha + t$$
$$(t+t) + p \rightarrow t + \alpha$$

 First experiment at Dubna: intermediate angles
 R. Wolski et al., PLB 467 (1999)

- Experiment at GANIL
 complete angular distribution
 - P. Roussel-Chomaz, GANIL

⁶He(p,t)α Inverse kinematics SPEG+MUST

¹³C @ 60AMeV primary beam

⁶He @ 25 AMeV produced with SISSI

P. Roussel-Chomaz, GANIL

⁶He(p,t)⁴He experimental set-up: MUST

Energy resolution 60 keV, p up to 6 MeV Si(Li) : protons up to 25MeV CsI : protons up to 70 MeV 8 telescopes 6x6 cm² 1000 channels of electronics

Y. Blumenfeld et al, NIM A421 471 (1999)

7500

5000

Spectroscopic Factors, Trento, March 2004

E Si(Li) KeV

125591

7**T** j

⁶He(p,t)⁴He kinematics

Elastic scattering ⁶He+CH₂

P. Roussel-Chomaz, GANIL

P. Roussel-Chomaz, GANIL

Previous results

Continuum states

DWBA calculation

2n and t transfer
included
Breakup up effects
taken into account
with effective potential
obtained from inversion
procedure (R. Mackintosh et al., PRC 67 (2003)034607)

P. Roussel-Chomaz, GANIL

Breakup of ⁶He: CDCC calculations

⁶He(⁴He,⁴He)⁶He
fusion ⁶He + ²⁰⁸Pb
⁶He(p,t)⁴He

K. Rusek et al., PRC 61, 034608 (2000) K. Rusek et al., PRC 67, 041604 (2003) K. Rusek et al., PRC 64, 044602 (2001)

P. Roussel-Chomaz, GANIL

Y. Sakuragi et al., Prog. Theor. Phy. Suppl. 89, 136 (1986)

Effective ⁶He+p potential

R. Mackintosh et al., PRC 67 (2003) 034607

DWBA calculations : entrance and exit channels

1) Entrance channel

P. Roussel-Chomaz, GANIL

DWBA calculations : spectroscopic amplitudes

P. Roussel-Chomaz, GANIL

DWBA calculations : spectroscopic amplitudes

Theory

• TISM $S_{\alpha-2n} = 1.12$ $S_{t-t} = 1.77$

Yu. F. Smirnov, PRC 15 (1977) 84

RGM $S_{t-t} = 0.49$

K. Arai et al., PRC 59 (1999) 1432

P. Roussel-Chomaz, GANIL

DWBA calculations : spectroscopic amplitudes

Yu. F. Smirnov, PRC 15 (1977) 84

 $\blacksquare RGM \qquad S_{t-t} = 0.49$

K. Arai et al., PRC 59 (1999) 1432

Spectroscopic Factors, Trento, March 2004

P. Roussel-Chomaz, GANIL

Which exit channel potential?

-No data for α -t system in the energy range considered

Which exit channel potential?

-Very strong neutron exchange

-DWBA calculations for ³He+⁴He elastic scattering with « bare » optical potential and explicit treatment of neutron exchange

-Gaussian potentials (α - α , α -³He, α -t) Buck et al., Journ. Phys. G 14 (1988) L211

-Woods-Saxon potentials (« Rusek » potentials)

Test on ³He+⁴He elastic scattering

Conclusions

$^{6}\text{He}(p,t)\alpha$ reaction at 25 MeV/nucleon

- Forward and backward angles measured for the first time necessary to determine $\mathbf{S}_{t\text{-}t}$

-DWBA analysis

Many results already published

Special care for entrance and exit channel potentials

Entrance channel: breakup of ⁶He (CDCC)

Exit channel ⁴He+t

strong neutron exchange effects no good reproduction of ³He+⁴He elastic scattering with « bare » potential, including explicitely exchange channel Spectroscopic factors

$$S_{\alpha-2n} \approx 1$$
$$0.04 < S_{t-t} < 0.09$$

small value but necessary to reproduce ${}^{6}\text{He}(p,t)\alpha$ data

P. Roussel-Chomaz, GANIL

Perspective

Radioactive beams +transfer reactions

MUST II

1st Test:March 2004

. Compact electronics: ASIC . with EXOGAM and TIARA

P. Roussel-Chomaz, GANIL

Perspectives

Active target

- detection gas used as target
- ✓ High efficiency
- Low detection threshold
- ✓ Used as thick target
- ✓ Large angular coverage
- ✓ Wide range in energy

W. Mittig, C.E. Demonchy et al., GANIL Spectroscopic Factors, Trento, March 2004

P. Roussel-Chomaz, GANIL

April 1-2, 2004 GANIL Maison d'hotes www.ganil.fr/spiral2ws/

P. Roussel-Chomaz, GANIL

Perspectives

- Influence od sequential transfer: ⁶He(p,d)⁵He
- Experiment: ⁶He(t,t)⁶He

Radioactive beams + transfer reactions

- ⁵**H**: ⁸He(p, α)⁵H, ³H(t,p)⁵H
- ⁷**H**: 8 He(d, 3 He)⁷H, 8 He(t, α)⁷H
- ¹⁰He: ⁸He(t,p)¹⁰He

MUST II

- collaboration Ganil, Orsay, Saclay
- P. Roussel-Chomaz, GANIL

 σ_{R}

P. Roussel-Chomaz, GANIL

Voies couplées

•
$$\Psi_{CRC} = \sum_{i}^{cible} \Phi_{i}^{p} \chi_{i}^{t-p}$$

projectile

$$\bullet (H-E)\Psi_{CRC} = 0$$

i=a,b,c...

partitions de masse Exemple: 6He + p, 5He + d, 4He + t

- Projection sur les différents états d'une partition de masse
 Système d'équations intégro-différentielles couplées reliant les ^{X t-p} inconnues
- Résolution système + conditions asymptotiques
- Amplitudes de diffusion f_{ab} , f_{bc}
- Section efficace différentielle de la réaction

voies couplées entre 2 partitions de masse:

P. Roussel-Chomprefordure les résultats de DAVBASCOPIC Factors, Trento, March 2004

Heiberg Andersen, thèse, Bergen

P. Roussel-Chomaz, GANIL

A. Lagoyannis et al PLB 518 (2001) 27

P. Roussel-Chomaz, E

ctors, Trento, March 2004

Analyse de MUST

- 1^{ère} expérience avec particules de haute E Saturation ⁴He dans préamplificateurs
- Calibration des CsI
 - dépend de la particule
 - repose uniquement sur une calibration avec source α des pistes
- Repérage dans l'espace des modules solution: bras télescopique

Heiberg Andersen, thèse, Bergen

DWBA

- $A + a \longrightarrow B + b$ $\{B+x\} + a \longrightarrow B + \{a+x\}$ • x: nucléon(s) transféré(s)ici: t, 2n
- $\frac{d\sigma}{d\Omega}$ dépend de T_{AB} : élément de matrice de la réaction
- $\mathbf{T}_{AB} = \langle \chi_{bB}^{-} \Phi_{b} \Phi_{B} | W_{bB} | \Psi_{aA}^{+} \rangle$ post $\chi_{aA}^{+} \Phi_{a} \Phi_{A} \quad DWBA$ • $W_{bB} = V_{bB} - U_{bB}$ • $\Psi_{bB} = V_{bB} - U_{bB}$

 $V_{aB} + V_{xB}$ décrit la diffusion élastique de b+B

P. Roussel-Chomaz, GANIL

Transfert des 2 neutrons à partir

P. Roussel-Chomaz, GANIL

Spectroscopic Factors, Trento, March 2004

IV)

Transfert des 2 neutrons à partir

P. Roussel-Chomaz, GANIL

Spectroscopic Factors, Trento, March 2004

IV)