Is the Spin-Orbit Interaction Changing with Neutron Excess?

John Schiffer

Collaborators: S.J. Freeman, C.-L. Jiang, K.E.Rehm,S. Sinha, (Argonne Nat'l. Lab.), J.A. Caggiano, C.Deibel, A.; Heinz, R. Lewis, A. Parikh, P.D. Parker,(Yale U.), J.S. Thomas (Rutgers U.)

Motivation

- The origin of the nuclear shells or 'magic numbers' was a mystery until Maria Mayer and H. Jensen et al. noted that the spin-orbit force with j-j coupling could account for them.
- There has recently been talk of 'shell quenching', possibly from a change in the spin-orbit interaction, in neutron-rich nuclei, and there is some indication for this in r-process abundance data.

Spin-Orbit Interaction

- Its microscopic origins are relatively poorly understood,
- It **must** be a surface effect,
- *Ab origine* calculations suggest that a good part of it may come from 3-body forces,
- Experimentally it is difficult to determine by direct measurement of the splitting because
 - a) for low I, the splitting is small, and even small admixtures make a difference,

b) for large I, the upper member of a doublet is too high in

excitation energy and badly fragmented.

To track changes in spin-orbit structure use one-nucleon adding transfer reactions for the maximum 1-states and the (relatively small) separation between the low-lying $j_{<}$ state from one shell and the $j_{>}$ (1+1 'intruder') state from the next shell.

e.g. $g_{7/2}$ - $h_{11/2}$ or $h_{9/2}$ - $i_{13/2}$

What is meant by 'single-particle states'?

A *single* state outside a closed shell, of a given (I, j) that has a 'large' spectroscopic factor in a nucleon adding reaction -- with no other state with significant strength and the same (I, j).
Or, if the strength is fragmented, then the centroid -- of the fragments weighted by their spectroscopic factors.

Absolute spectroscopic factors have to do with correlations in the many-body system and with reaction theory.

Comparing spectroscopic factors in the same vicinity of nuclei is an important tool for understanding nuclear structure.

Spectroscopic Factors -- **History**

- To compare resonances with different widths in **R**-matrix theory (Wigner et al.) one defines a surface at radius R.
- Inside this surface things are black unknown.
- Outside this surface is phase space, and one matches logarithmic derivatives on the surface.
- The widths are defined by $\Gamma \equiv P_1 \gamma^{2}$, where γ^2 characterizes the interior and P_1 the outside.
- The γ^2 obey the Wigner-Teichman sum rule which states that they can be no bigger than h-bar²/(MR²), the limit coming from purely dimensional arguments,
- When Macfarlane & French defined spectroscopic factors, S corresponded to γ², divided by this limit. Thus spectroscopic factors from the beginning refer to the asymptotic tails of the wave functions.
- The beautiful spectral functions from (e,e'p) are related, but **not** the same.

To obtain reliable information on spectroscopic factors, momentum matching is important: $|q\mathbf{R}| \approx |$.

Good matching is required for the validity of the approximations in the reaction models.

If momentum matching is poor, then more complicated higher-order process become significant and spectroscopic factors are less meaningful.

Neither the $g_{7/2}$ nor the $h_{11/2}$ states have radial nodes -- so their radial structures are similar. Their sensitivity to changes in potential and their overlaps with changing neutron-orbit occupations are likely to be similar.

The Sn nuclei have a closed shell of 50 protons and their internal structure (low-lying 2⁺ and 3⁻ states) is stable.

Triton spectra at 6^{0} Colors: $g_{7/2} h_{11/2}$

John Schiffer Does the Spin-Orbit Interaction Depend on Neutron Excess? Trento, March 3, 2004

- Used 40 MeV α-s from Yale ESTU tandem with split-pole Enge spectrograph.
- To get accurate cross sections the elastic scattering at 9° was measured for each target and the right/left asymmetry monitored at +/- 30°.
- Cross sections for isolated states are believed to be accurate to <5%, with the major systematic uncertainty arising from possible contributions from other states.
- The total uncertainties in the cross sections are $\sim \pm 10\%$.
- Parameters for DWBA calculations taken from the literature -- absolute spectroscopic factors vary by ±50% but relative values for a given parameter set are consistent at the 15% level.

Target	Ratio ($\sigma_{6^{\circ}}$)	S _{7/2} *	S _{11/2} *
¹¹² Sn	1.47	0.99	0.84
¹¹⁴ Sn	1.39	1.10	0.93
116 Sn	1.57	0.95	0.97
¹¹⁸ Sn	1.64	0.88	0.99
¹²⁰ Sn	1.41	1.13	1.12
122 Sn	1.45	0.98	1.00
¹²⁴ Sn	1.59	1.00	1.12

*Using a single normalization for all 14 transitions.

John Schiffer Does the Spin-Orbit Interaction Depend on Neutron Excess? Trento, March 3, 2004

John Schiffer Does the Spin-Orbit Interaction Depend on Neutron Excess? Trento, March 3, 2004

Conclusions (1)

- The observed spectroscopic factors are consistent with 'single-particle states' for the $g_{7/2}$ and $h_{11/2}$ for all seven even Sn targets.
- The relative energies are changing in a way that is consistent with decreasing s.o. strength with increasing N.
- Extrapolating with γ-decay data, the s.o. strength is reduced by ~ a factor of almost 2 by ¹³²Sn.
- The qualitative behavior is similar for the existing data for $h_{9/2}$ - $i_{13/2}$ for one neutron outside N=82.
- The maximum s.o. splitting appears near the line of maximum β -stability (a little to the left) where proton and neutron radii are most nearly equal.
- Could it be changes in the radial structure of the s.o. potnl.?

Woods-Saxon parameters fixed, with $A^{1/3}$ dependence of radii and well-depth adjusted to fit binding of $g_{7/2}$ state.

Conclusions (2)

- The change in s.o. radius needed to explain the effect seems too large but perhaps it provides a hint?
- There is no sign of such behavior in H.F.B calculations, for instance of Dugue, Bonche, et al.
- The most promising other regions with stable targets are the $g_{9/2}$ - $f_{5/2}$ proton-holes in Z=50 and the $h_{11/2}$ - $g_{7/2}$ neutron-holes in N=82. There is evidence that the single-hole strength is much more fragmented than that of the states studied here. No other promising regions are apparent until radioactive beams become available.