Particle-vibration coupling in halo nuclei

R.A. Broglia, P.F. Bortignon, (Milano) G. Colo', G.Gori, E. Vigezzi

F. Barranco

(Sevilla)

F. Barranco et al., Eur.Phys.Jour. A 11(2001)385

G.Gori et al., nucl-th/0301097

Aim of the talk

To discuss the role of core polarization in halo nuclei.

To show that, based on limited phenomenological input, it is possible to provide a quantitative calculation of the basic features of ¹¹Be,¹²Be,¹⁰Li,¹¹Li and of the spectroscopic factors, in reasonable agreement with experiment.

The parity inversion problem in ¹¹Be

	¹¹ Be	¹⁰ Be 6.8 MeV	
Separation energy	0.5 MeV		
Lowest excited state	0.32 MeV,	3.4 MeV	
Radius	3 fm	2.3 fm	

Good situation for the mean field approximation:

But! The quantum numbers of the ground state are not those predicted by the mean field (1p1/2) . but 2s1/2, in the next shell!!

Stronger spin-orbit force for halo states?

(N. Vinh Mau, *Nucl. Phys. A592(95)33*)

(F. Nunes et al., *Nucl. Phys. A596(96)171*)

Experimental systematics

Mean-field results with Skyrme force (Sagawa, Brown, Esbensen PLB 309(93)1)

A. SELF ENERGY

"Be, case: remsen, 11

51/2 -2.5 MeV & d.5/2 Eshift (ħ.Ω2+: 3.4 MeV; β2~1.0)

Fig. 4.29. Representation of the results of Bernard and Nguyen Van Giai [96] for the neutron quasiparticle energies in the valence shells of ²⁰⁸Pb. The observed values are plotted on the left-hand side and the results of the Skyrme III-Hartree-Fock approximation on the right-hand side. The middle column gives the quasiparticle energies, see section 4.6.5.

222

WELL KNOWN COLLECTIVE SURFACE MBRATIONS FROM EXP $R(\hat{v}) = Ro \{1 + \sum_{n} \alpha_{n} + \sum_{n} (\hat{v})\}_{n} + \sum_{n} (\hat{v}) + \sum_{n} (\hat{v})$ $H_{GII} = \frac{1}{2} \sum \left(\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \right) \cdot \frac{1}{2} \cdot \frac{1}{4} \frac{1}$ The values of they, and By are taken from experiment or attentively from an RPA calculation THE MODEL HAMILTONIAN $H = \frac{P^2}{2m} + U(r; \alpha) + Hcoll$ where U(F,d) = Uo(+ Zax Y) = Uo(r) - rollo Z x y / Jul (b) => H= P2 + Uo(r) + Hale + Hpv With How - rollo I Vites [ot + (- 10,] Yy (3)

Pauli-blocking correlations

The ¹⁰Be core itself is not a simple Slater determinant assupposed in mean field:

There are ground state correlations, that is, mixing of configurations \rightarrow partial occupation of orbits that in a pure mean field description are completely empty.

When the halo neutron is added to form ¹¹Be, the extra neutron will partially block the single-particle orbits available for ¹⁰Be to correlate: the binding energy decreases.

The effect is strongest when associated to the lowest "empty" orbit, that is to the $1p_{1/2}$ orbit.

In this way Sagawa, Brown ed Esbensen explained the parity inversion in ¹¹Be.

Elaborating on the ¹¹Be calculation

New elements of our calculation:

Standard Woods-Saxon potential including spin-orbit according to Bohr and Mottelson

We include the (discretized) continuum for s-, p- and dorbits:

Schrödinger equation solved with reflecting boundary conditions at a variable radius R => infinity

The calculations have been carried out using the Nuclear Field Theory:

a systematic and fully consistent scheme for the particlevibration coupling. It allows a coherent treatment of

configuration mixing, .

Pauli-blocking correlations

$$| \downarrow \rangle_{j\pi}, | \downarrow \rangle_{j\pi}, | \downarrow \downarrow \rangle_{j\pi}, | \downarrow \downarrow \rangle_{j\pi},$$

Fermionic degrees of freedom:

• s1/2, p1/2, d5/2 Wood-Saxon levels up to 150 MeV

Bosonic degrees of freedom:

• 2+ and 3- QRPA solutions with energy up to 50 MeV; residual interaction: multipole-multipole separable with the coupling constant tuned to reproduce E(2+)=3.36 MeV e $0.6<\beta_2<0.7$

Effective, energy-dependent matrix (Bloch-Horowitz)

 $= \langle b | - r \frac{\partial U_0}{\partial r} \chi_m | a \rangle \frac{f_w}{c_1}$

 $a = \left[\frac{b}{a} \right]^2$ $E - (E_b + Kw_1)$ $\sum_{i=1}^{n} \frac{1}{E_{i}} = \frac{1}{E_{i}} \frac{1}{2E_{i}} \frac{1}$

Admixture of $d_{5/2} \ge 2^+$ configuration in the 1/2⁺ g.s. of ¹¹Be is about 20%

Particle-vibration coupling in ¹¹Be

NFT ground state $|1/2+\rangle = \sqrt{0.87} |s_{1/2}\rangle + \sqrt{0.13} |d_{5/2} \otimes 2+\rangle$

Exp.: J.S. Winfield et al., Nucl.Phys. A683 (2001) 48 $|1 / 2 + \rangle = \sqrt{0.84} |s_{1/2}\rangle + \sqrt{0.16} |d_{5/2} \otimes 2 + \rangle$ 11Be(p,d)10Be in inverse kinematic detecting both the ground state as well as the 2+ excited state of 10Be.

Good agreement between theory and experment concerning energy and spectroscopic factors

			Theory		
		Exper.	particle-vibration +Argonne	mean field	
s	$\mathbf{E}_{s_{1/2}}$	$-0.504 { m ~MeV}$	$-0.48~{ m MeV}$	$\sim 0.14~{\rm MeV}$	
	$\mathbf{E}_{p_{1/2}}$	-0.18 MeV	$-0.27 { m ~MeV}$	-3.12 MeV	
	$S[1/2^+]$	0.77	0.87	1	
	$S[1/2^{-}]$	0.96	0.96	1	
				<u> </u>	

Experimental Spectroscopic Factors from

B. Zwieglinski et al., Nucl.Phys.A315(1979) 124

CORE + 2 neutrons

2

COLLECTIVE SURFACE VIBRATIONS

 $R(\hat{\sigma}) = Ro\left\{1 + \sum_{n} \alpha_{n}^{*} \chi_{n}(\hat{\sigma})\right\} \quad : \lambda = 2^{+}, \overline{3}, 4^{+}, 5$ $H_{cdl} = \frac{1}{2} \sum \left(\frac{B_{\lambda}}{A_{\mu}} | 2 + G_{\lambda} | 4 \int_{a} |^{2} \right); \quad h_{\omega_{\lambda}} = h_{\lambda} \int_{B_{\lambda}} \frac{1}{B_{\lambda}} \\ H_{cdl} = \frac{1}{2} \sum \left(\frac{B_{\lambda}}{A_{\mu}} | 2 + G_{\lambda} | 4 \int_{a} |^{2} \right); \quad h_{\omega_{\lambda}} = h_{\lambda} \int_{B_{\lambda}} \frac{1}{B_{\lambda}} \frac{1}{B_{\lambda}} \\ H_{cdl} = \frac{1}{2} \sum \left(\frac{B_{\lambda}}{A_{\mu}} | 2 + G_{\lambda} | 4 \int_{a} |^{2} \right); \quad h_{\omega_{\lambda}} = h_{\lambda} \int_{B_{\lambda}} \frac{1}{B_{\lambda}} \frac{1}{B_{\lambda}}$ $H = \frac{P_i^2}{2m} + \frac{P_z^2}{2m} + \frac{P_{cone}^2}{2M_{cone}} + \frac{\mathcal{V}(1\overline{r_i} - \overline{r_2}i)}{m} + \mathcal{U}(\overline{r_i}\alpha) + \mathcal{U}(\overline{r_2}\alpha) + \mathcal{H}(\alpha)$ with Pcore= -Pi -P2 $H = \frac{P_i^2}{2\mu} + \frac{P_2^2}{2\mu} + \frac{P_1(\vec{y}_1 - \vec{y}_2)}{nn} + \mathcal{U}(\vec{y}_1 - \vec{y}_2) + \mathcal{U}(\vec{y}_2 - \vec{y}_1) + \mathcal{H}_{col} + \frac{P_i \cdot P_2}{N_{con}}$ where U(F; x) = Uo(T+ZXXX) = uo(r) - Xr duo Z Xju /juli); Xal.

-al at aa of 21 b 2Eb a (3) Bloch-Horowitz perturbation method > Model Space: model Space states must not appear as intermediate states a = [w 3 , st Eqs-Eint] 3~

Fermionic degrees of freedom:

two particle states coupled to zero angular momentum on s1/2, p1/2, d5/2
 Woods-Saxon levels up to 150 MeV

Bosonic degrees of freedom:

•1-, 2+ and 3- QRPA solutions up to 50 MeV, associated to a multipolemultipole separable interaction with coupling constant tuned to reproduce E(1-)=2.7 MeV and $B(E1)=0.052 e^2 fm^2 = E(2+)=2.1$ MeV and $0.6<\beta_2<0.7$

$$| \downarrow \downarrow \rangle_{00}, | \downarrow \downarrow \downarrow \rangle_{00}, | \downarrow \downarrow \downarrow \downarrow \downarrow \rangle_{00},$$

Effective, energy-dependent matrix

The pairing energy between the valence neutrons originates mostly from polarization effects, and not by the nucleonnucleon bare interaction (Argonne potential)

Calc.

Spectroscopic factors from $({}^{12}Be, {}^{11}Be + \gamma)$ reaction to $\frac{1}{2}$ + and $\frac{1}{2}$ - final states:

 $S[1/2^{-}] = 0.42 \pm 0.10$ $S[1/2^{+}] = 0.37 \pm 0.10$

ξ_i are obtained diagonalizing the energy-dependent matrix

4

Spectroscopic factors measure the overlap between ¹¹Be and ¹²Be

Good agreement between theory and experiment concerning energy and spectroscopic factors

		Theory	
	Exper.	particle-vibration +Argonne	mean field
\mathbf{S}_{2n}	-3.673 MeV	-3.58 MeV	-6.24 MeV
$\mathrm{s}^2,\mathrm{p}^2,\mathrm{d}^2$		23%, 29%, 48%	0%,100%,0%
$S[1/2^+]$	0.42 ± 0.10	0.31	0
$S[1/2^{-}]$	0.37 ± 0.10	0.57	4

Particle-vibration coupling

in ¹⁰Li and ¹¹Li

Comparison with experiment

		E	Theory	
		Exper.	particle-vibration +Argonne	mean field
¹⁰ Li ₇ (not bound)	S	0.1 – 0.2 MeV	0.2 MeV (virtual)	≈1 MeV (virtual)
	р	0.5 – 0.6 MeV	0.5 MeV (res.)	-1.2 MeV (bound)
	S _{2n}	0.294±0.03 MeV	0.33 MeV	2.4 MeV
¹¹ ₃ Li ₈	s^2 , p^2	50 % , 50 %	41% , 59 %	0%, 100%
(bound)	$\left\langle r^{2}\right\rangle ^{1/2}$	$3.55 \pm 0.1 fm$	3.9 fm	
	σ_{\perp}	$48 \pm 10 \frac{\text{MeV}}{c}$	$55 \frac{\text{MeV}}{c}$	

Spatial correlations between

the two halo neutrons

ADVANTAGES OF THE MODEL:

- Standard mean-field potential, without adjustments of the spin-orbit force or I-dependent terms; the same parametrization for Li and Be isotopes

- Coupling with continuum states is taken into account

- Bare interaction between the valence neutrons, without adhoc density dependent terms

- Limited amount of phenomenological input: strength of lowlying vibrations

- Consistent treatment of the Pauli principle (Nuclear Field Theory)

- SOME LIMITATIONS OF THE MODEL :

- One-phonon configurations
- Harmonic vibrations of the core
- Tamm-Dancoff treatment of pairing vibrations

Pairing gaps in uniform matter calculated with effective and bare interactions look similar...

However, in ¹²⁰Sn Argonne potential reproduces experiment only taking into account renormalization effects

