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Topics	
●  Finite	Time	Lyapunov	Exponent	for	dynamic	
systems	
●  Extension	of	Lyapunov	Exponent	for	infinite	Bme	
●  Field	line	“tracer”	for	a	vector	field,	e.g.	fluid	velocity	
●  Rate	of	divergence/convergence	of	nearby	field	lines	is	
related	to	underlying	structures	of	the	3D	vector	field,	as	
it	evolves	in	Bme	

●  First	applicaBon	to	plasmas:	MHD	sawtooth	crash	
●  B,	V	vector	fields		
●  Nonlinear	MHD	numerical	simulaBon	

●  New	view	of	MHD	turbulence,	incompressibility	
●  Future	developments	
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Lyapunov	Exponent	
●  Lyapunov	exponents	are	related	to	phase	space	behavior	
over	infinite	Bme;	the	maximal	one	is	related	to	overall	
system	stability	

●  Measure	the	separaBon	of	trajectories		
							δΖ	=	δZ0	exp(γt)	
							γ	=	limt➝∞	limδZo➝0	(1/t)	ln	(|δΖ(t)|/|δΖ0|)	
	
l  Spectrum	of	values,	one	per	dimension	
l  Maximal	value	related	to	system	stability	



Modern	Finite	Time	Lyapunov	Exponent	
●  Finite	Time	Lyapunov	Exponents	measure	the	local	rate	of	

divergence	(or	convergence)	of	the	field	lines	of	a	vector	field	over	
a	finite	∆t	interval;		real	space	

																	δL = δLo exp(γteff ),  over    teff =	t-t0 = L‖/|V| 	

●  Lagrangian	Coherent	Structures	(LCS)	are	aaracBng	or	repelling	
velocity	structures	defined	by	the	flow	manifolds;	persistent;	
coherent	evoluBon	over	Bme.	Usually	hard	to	see.	

●  MathemaBcally	rigorous	relaBon	to	FTLE	⟷	LCS	proven	
●  G.	Haller,	S.	Shadden,	et	al.,	2001-2007+;		generalized	to	n	

dimensions	
●  Many	pracBcal	applicaBons;	rapidly	evolving	
●  Many	other	FTLE-like	quanBBes	exist,	but	no	rigorous	relaBon	
to	LCS	yet	proven,	even	for	finite	distance	(FSLE).	



Structure	inside	chaos	is	common	in	fluids	
●  A	vector	field,	perturbed	
●  Fluid	velocity	field	V	(or	any	reasonable	vector	field)	has	
invariant	flow	manifolds	(oriented	surfaces)	

●  Disturbance	leads	to	an	asymptoBc	splihng	of	these	invariant	
manifolds	into	stable	and	unstable	manifolds	
●  Depends	on	the	direcBon	in	which	the	vector	field	lines	are	followed	

●  Unstable	manifold	develops	oscillaBons	around	the	stable	
one.		Flow	can	follow	either	and	cross	original	surfaces.	

●  Simple	example	–	Hamiltonian	system	
	



●  1D	pendulum	in	(x,v)	phase	space	
●  	Hamiltonian	system,	periodic	in	x:																												 

●  Transverse	perturbaBon	anywhere	on	
separatrix,	e.g.,	by	a	forcing	term	at	
different	frequency,	causes	the	
separatrix	surface	(a	manifold)	to	split	
into	2	different	asymptoBc	limits,	with	
complicated	behavior	near	an	X-point.	

●  Trajectories	formed	by	the	extended	
loops	on	the	two	sides	of	the	X-point	
intersect	many	Bmes	and	become	
chaoBc.		Similar	trajectory	splihng	
occurs	at	each	new	X-point.	

●  Plasma	– B	field	is	Hamiltonian	at	each	
Bme	t	

(Homoclinic) tangle in a Hamiltonian system 

Lichtenberg and Lieberman, 
Regular and Chaotic Dynamics (1992)  
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Fluid	experiments	confirm	LCS	properBes	
●  Fluid	experiments	relate	the	LCS	manifolds	to	divergence/
convergence	of	the	flow	-	``ridges’’	and	``valleys’’	

Flow divergence from tracer particles is used to reconstruct LCS manifolds 
Red – positive divergence -> ridge,  Blue – negative -> valley 
 
Turbulent fluid (top view of cylinder) 
(M. Mathur, et al, PRL 2007) 



Finite	Time	Lyapunov	Exponent	in	a	fluid	
Local	divergence	or	convergence	of	nearby	field	lines	(“strain”)	over	a	
chosen	Bme	interval,	calculated	as	an	exponenBal	rate	
										δL = δLo exp(γteff ),  over    teff =	t-t0 = L‖/|V| 

●  Scalar	funcBon	of	space	γteff(x,t0)	
●  Picks	out	boundaries	in	flow,	including	vorBces	in	turbulent	fluids	

-	 Decaying	2D	fluid	turbulence,	with	mulBple	
vorBces	and	fine	scale	structure			
(G.	Lapeyre,	Chaos,	2002)	
	
Light	=	large	FTLE	=	fast	divergence	of	flow	
				lines	->	boundaries	of	different	flows	
	
Dark	=	small	=	liale	divergence		
				->	centers	of	vorBces	
	
Traced	for	longer	->	more	fine	scale	
structure	visible	
	



Fluid	jet	with	turbulence:	FTLE	picture	

FTLE rendering for a jet of fluid moving upward into a stationary fluid. 
Forward time (diverging flow) regions are red, and backward time 
(converging) in blue          (C. Garth et al., SciDAC Review 15 December (2009)) 



First	applica@on	of	FTLEs	to	plasma	

●  A	plasma	has	many	possible	fields	
●  Simplest:	MHD		B	and	V	fields	at	a	single	Bme,	from	simulaBon	
●  Work	with	visualizaBon	experts:	H.	Krishnan	(LBNL),	H.	Childs	
and	grad	student	Ryan	Bliele	(Univ	Oregon)	implemented	a	
high	accuracy	FTLE	calculaBon	in	the	VisIt	open	source	
visualizaBon	package.	
●  Developed	an	ocean	circulaBon	problem	(Özgökmen,	et	al.,	Ocean	

Model.	(2012)	with	H.	Krishnan)	
●  Parallelized	version	(Electronic	Imaging	conference	2017;	Bleile,	

Sugiyama,	et	al)	

●  ApplicaBon	–	sawtooth	crash	in	tokamak	with	M3D	code	
●  Simple	structure		
●  Shortest	tracing	distance	of	1	helical	circuit	around	(q=1)	



Resis@ve	MHD	



Sawtooth	Instability	
●  Internal	kink	of	the	m=1,	n=1	surface	near	the	center	of	the	
plasma.	



Sawtooth	Instability	
●  Internal	kink	of	the	m=1,	n=1	surface	near	the	center	of	the	
plasma	–	magneBc	field	

		



Large	island:	Temperature	and	density	
φ=0 (HFS) φ=π (LFS) Temperature 

φ=0 (HFS) φ=π (LFS) Density 

Time t=467.2 during 
fast crash, when the 
magnetic island width 
≃ ‘hot’ core diameter 
≃ r1 (q=1 radius) 
 
Single slice through 
 the torus: angles 
 φ=0,π 
Expanded view of  
central region 
 
Alcator C-Mod-like  
 plasma, low qo near 
 0.5, Lundquist number 
 S=108 

 
From Sugiyama, Phys.  
Plasmas (2013)) 
 
 
 
 
                                                                                   



	Magne@c	field	FTLE:	divergence	and	convergence	

●  FTLEs of total B (color) follow the perturbed poloidal magnetic flux ψ̃ (lines) 
    where B = ∇ψ×∇φ + (1/R)∇⟘F + I∇φ. 
●  Diverging (large FTLE(+B)) and converging (large FTLE(-B)) field are 
    different.  Both are large near q=1 boundaries, reconnection X-point. 

FTLE(+B)  (divergence)           at  φ=0   FTLE(-B)  (convergence) 



MagneBc	field	FTLEs	at	φ=π	

•  Outboard (LFS) X-point shows somewhat different shape than inboard 
•  Difference is larger at the peak of the crash (final fast temperature outflow 
    from q<1) 



FTLE(B) and puncture plot 

φ=0 (HFS)  t=467.2 

•  FTLE	structures	are	not	aligned	with	flux	surfaces.		
•  Low	values ︎	in	regions	around	magneBc	O-points	
•  High	values	-	boundaries	between	flux	regions	



	FTLE	picks	out	2/1	field	line	encircling	the	hot	core	

•  Two	spots	have	very	high	FTLE(B)	values,	one	on	each	side	of	the	
hot	core	(near	reconnecBon	X-point	at	q=1	and	opposite	it)	arise	
from	an	m=2/n=1	X-line	encircling	the	hot	core	(unexpected).	

•  Linear	internal	kink	mode	has	large	2/1	ψ̃	peaked	at	q=1	(Bussac	
1975).	In	typical	tokamak	ψ̃2,1/ψ̃1,1=1/5-1/4.	(Not	in	RMHD!)	

•  Nonlinearly	this	can	lead	to	annulus	around	the	hot	core,	where	2/1	
X-line	is	surrounded	by	low	m,n	island	chains;	widens	reconnecBon	
X-region	(Seen	in	other	full	MHD	simulaBons	(Aydemir	PoP	1989))	



Full	cross	sec@on:		FTLE(±B)	

•  Full	cross-secBon	view	of	FTLEs	(+B)	and	(-B),	traced	for	same	
distance	L/a=20,	approximately	one	complete	helical	circuit	at	q=1	

•  Picks	up		3/1	island	at	q=3	(largest	values	around	X-points	of	islands).	
•  Global	spirals	due	to	flux	surface	geometry	at	fixed	tracing	distance	



●  FTLE(±V)	structures	follow	the	1/1	internal	kink	convecBve	cells	
●  Traced for same “time” as B ➝ much shorter spatial distance L = 

tV≈2πRV/B, since fluid velocity |V|<|B| 

●  Overall, follows the poloidal stream function U contours, which 
are approximately the velocity flow lines in the 2D poloidal 
plane.  v = εR∇U×∇φ + ∇⟘χ + vφ φ 

●  Suggests MHD turbulence hidden in overall flows – clear 
signatures of finer scale vortices or eddies. 

●  ``Incompressiblity’’	of	the	fully	compressible	simulaBon:	

					FTLE(V+B)	and	(V-B)	also	have	a	1/1	kink-like	structure	
●  Rotation of B structure by smaller V 

●  Approximately follows composite poloidal flow U ± ψ̃/Ro, Ro≃3 

  FTLEs for MHD plasma velocity 



FTLE(MHD	velocity)	

•  Follows poloidal velocity stream function U (lines), i.e., 1/1 convective cells 
●  Vorticity ‘eddies’ at smaller scales, e.g., outflow regions into island 
●  Traced short distance (approx 1/10 of toroidal circumference)  
 

FTLE(-V) FTLE(+V) with U lines ˜	



Velocity	vector	streamlines	cover	≲1/10	of	torus	



MHD	turbulence	–	longer	trace	

●  Left: Tracing velocity FTLE for longer time/distance shows more and smaller  
   vortices  
●  Still only 1/5 of torus circumference 2πR -> MHD turbulence evident at relatively  
   large scales  (n≤23 toroidal harmonics) 

 

FTLE(V) traced for t=20 FTLE(V) traced for t=42 (2X longer) 



``Par@ally	incompressible’’:		FTLE(V±B)	

●  V±B also has a 1/1 FTLE structure, somewhat related to the composite poloidal  
     stream functions U ± ψ̃/Ro 
●  Elsässer variables z±=V±B are exactly equivalent to incompressible MHD (V,B) 
 

FTLE(V+B) with U+ψ̃/Ro lines FTLE(V-B) with U-ψ̃/Ro 



Field	and	flow	



FTLEs	can	address	fundamental	plasma	ques@ons	
●  What	role	does	stochasBcity	of	B	and	turbulence	in	V	play	in	
instabiliBes	at	low	resisBvity?	

●  Role	of	compressibility	(∇⦁v≠0):	the	Elsässer	variables											
z±	=	V±B	are	exactly	equivalent	to	(V,	B)	for	incompressible	
MHD	at	uniform	density	(Elsässer	(1950))	
●  Nonlinear	MHD	simulaBons	o�en	appear	“nearly	incompressible,”	

but	require	compressibility	for	accurate	results	–	how	to	quanBfy?	

●  RelaBon	between	kineBc	(parBcle	moBon)	and	MHD	or	fluid-
based	plasma	models	
●  FTLE	computaBon	is	equivalent	to	tracing	virtual	parBcles	along	field	

lines.	ParBcle	models	add	parBcle	dri�s	to	this	moBon.	A	number	of	
techniques	developed	for	FTLE	computaBon	might	speed	up	calc.	

●  GyrokineBc	parBcle	simulaBons	reduce	compressibility,	since	some	
moBons	are	too	fast	relaBve	to	ion	Larmor	orbit	averaging.		
Equivalent	to	reduced	MHD	when	velocity	moments	taken.		

●  FTLE	applies	to	any	vector	field	–	many	interesBng	plasma	fields!	



New	MHD	models	for	next	genera@on	
supercomputers	

•  Real	Bme	computaBon	of	FTLE’s	for	MHD	vector	fields,	
simultaneously	with	the	MHD	soluBon,	will	allow	
computaBon	of	the	underlying	dynamic	plasma	structures	
(Lagrangian	Coherent	Structures)	

•  Way	to	extend	MHD	to	next	generaBon	(exascale)	computers		
–  	MHD	is	a	global	soluBon,	uses	only	“few”	processors,	eg,	few	1000’s	
–  FTLE/LCS	computaBon	requires	strong	parallelizaBon	to	match	MHD	

Bmes	–	can	take	advantage	of	exascale	processing	

•  ConnecBon	to	parBcle	dynamics	and	simulaBon	models		
–  Tracing	the	vector	field	lines	for	the	FTLE	is	closely	related	to	following	

virtual	parBcles	along	field	lines:	kineBc	informaBon,	new	methods	
•  Currently	under	development	in	collaboraBon	with	H.	Childs,	

R.	Bliele,	Univ.	Oregon	



Summary	
•  	Modern	Finite	Bme	Lyapunov	Exponents	are	a	powerful	tool	
for	studying	3D	Bme-dependent	vector	fields	in	the	presence	
of	turbulence	or	stochasBcity	
●  Rigorously	related	to	the	underlying	structures	of	vector	fields	

(Lagrangian	Coherent	Structures)	and	their	evoluBon	
●  Rapidly	improving	methods,	interpretaBon,	applicaBons	in	fluids	

●  First	applicaBon	to	plasmas	
●  Plasma	has	mulBple	vector	fields:	simplest	are	MHD	B,	V	
●  High	accuracy	FTLE	computaBon	developed	in	VisIt	open	

source	visualizaBon	package	
●  Sawtooth	crash	in	M3D	at	a	single	Bme	–	new	insights	

●  FTLE	applies	to	general	vector	fields;	many	uses	for	plasmas	
●  Next	step:	Bme-dependent	LCS	for	plasma	

●  Extension	of	MHD	simulaBon	for	next	generaBon	computers	–	FTLE/
LCS	computed	simultaneously	with	MHD	

	


