Parallel, grid-adaptive computations

Rony Keppens

Centre for Plasma Astrophysics, Department of Mathematics, KU Leuven, Belgium

Abstract

In modern scale-encompassing simulations of space weather events, the largescale behaviour of the solar/heliospheric/magnetospheric plasma is typically treated by fluid approaches. Even when a magnetohydrodynamic (MHD) view on the dynamics is adopted (e.g., see [1]), the simulations benefit from automated gridadaptivity or Adaptive Mesh Refinement (AMR), which must be implemented in a highly computationally efficient, parallel manner. I will highlight generic strategies for allowing massively parallel, block-tree adaptive simulations in any dimensionality. We provide implementation details reflecting the underlying data structures as used in the open-source MPI-AMRVAC (see [2] and Keppens et al., 2012, Journal of Computational Physics **231**, 718-744). We discuss guidelines for data formats suitable for parallel I/O as well as for refinement strategies, paying attention to cover error estimators in use in many modern AMR frameworks. Example simulations focusing on reconnection events, coronal mass ejections, and sun-earth interactions from the literature are presented and discussed with particular attention to the AMR aspects.

References

 J.P. (Hans) Goedbloed, R. Keppens, and S. Poedts, Advanced magnetohydrodynamics. With applications to laboratory and astrophysical plasmas, Cambridge University Press, 2010.

1

[2] http://homes.esat.kuleuven.be/~keppens