
1.2. CANONICAL TRANSFORMATIONS

1.2. Canonical transformations

Let us suppose that a mechanical system is described by a set of canonical coordinates
pi, qi and by an Hamiltonian H

(
pi, q

i, t
)
in such a way that the motion equations are

given by

ṗi = −∂H
∂qi

q̇i =
∂H

∂pi

We want to introduce a new set of coordinates

Pi = Pi (p, q, t)

Qi = Qi (p, q, t) (1.2.1)

in such a way that {
Qi, Qj

}
p,q

= 0 (1.2.2)

{Pi, Pj}p,q = 0 (1.2.3){
Qi, Pj

}
p,q

= δij (1.2.4)

where the Poisson brackets of two functions are defined by

{A,B}p,q =
∂A

∂qi
∂B

∂pi
− ∂A

∂pi

∂B

∂qi

and a sum over repeated indices is understood. We will call the (1.2) a canonical trans-
formation.

1.2.1. A canonical transformation leaves the equation of motion in
Hamiltonian form

Now we ask the following question: is it possible to introduce a new Hamiltonian function
K in such a way that

Ṗi = − ∂K
∂Qi

(1.2.5)

Q̇i =
∂K

∂Pi
(1.2.6)
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If this is true, we can expand the total time derivative in (1.2.6) obtaining

∂K

∂Pi
=
∂Qi

∂qj
q̇j +

∂Qi

∂pj
ṗj +

∂Qi

∂t

=
∂Qi

∂qj
∂H

∂pj
− ∂Qi

∂pj

∂H

∂qj
+
∂Qi

∂t

=
∂Qi

∂qj

(
∂H

∂Qk
∂Qk

∂pj
+
∂H

∂Pk

∂Pk
∂pj

)
− ∂Qi

∂pj

(
∂H

∂Qk
∂Qk

∂qj
+
∂H

∂Pk

∂Pk
∂qj

)
+
∂Qi

∂t

=
∂H

∂Qk

(
∂Qi

∂qj
∂Qk

∂pj
− ∂Qi

∂pj

∂Qk

∂qj

)
+
∂H

∂Pk

(
∂Qi

∂qj
∂Pk
∂pj
− ∂Qi

∂pj

∂Pk
∂qj

)
+
∂Qi

∂t

=
∂H

∂Qk

{
Qi, Qk

}
p,q

+
∂H

∂Pk

{
Qi, Pk

}
p,q

+
∂Qi

∂t

=
∂H

∂Pi
+
∂Qi

∂t

and in the same way, expanding (1.2.5),

− ∂K
∂Qi

=
∂Pi
∂pj

ṗj +
∂Pi
∂qj

q̇j +
∂Pi
∂t

= −∂Pi
∂pj

∂H

∂qj
+
∂Pi
∂qj

∂H

∂pj
+
∂Pi
∂t

= −∂Pi
∂pj

(
∂H

∂Qk
∂Qk

∂qj
+
∂H

∂Pk

∂Pk
∂qj

)
+
∂Pi
∂qj

(
∂H

∂Qk
∂Qk

∂pj
+
∂H

∂Pk

∂Pk
∂pj

)
+
∂Pi
∂t

=
∂H

∂Qk

(
∂Pi
∂qj

∂Qk

∂pj
− ∂Qk

∂qj
∂Pi
∂pj

)
+
∂H

∂Pk

(
∂Pi
∂qj

∂Pk
∂pj
− ∂Pi
∂pj

∂Pk
∂qj

)
+
∂Pi
∂t

=
∂H

∂Qk

{
Pi, Q

k
}
p,q

+
∂H

∂Pk
{Pi, Pk}p,q +

∂Pi
∂t

= − ∂H
∂Qi

+
∂Pi
∂t

It follows that

∂Qi

∂t
= −∂ (H −K)

∂Pi
(1.2.7)

∂Pi
∂t

=
∂ (H −K)

∂Qi
(1.2.8)

Now we want to show that the differential

dF = PidQ
i −Kdt− pidqi +Hdt (1.2.9)
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is exact if and only if the transformation is canonical. We start by expressing dF in
terms of the differentials dpi, dqi and dt only:

dF = Pi

(
∂Qi

∂qj
dqj +

∂Qi

∂pj
dpj +

∂Qi

∂t
dt

)
−Kdt− pidqi +Hdt

=

(
Pi
∂Qi

∂qj
− pj

)
dqj + Pi

∂Qi

∂pj
dpj +

(
Pi
∂Qi

∂t
+H −K

)
dt

The necessary and sufficient condition is the equality of mixed derivatives, namely it
must be

∂

∂pk

(
Pi
∂Qi

∂qj
− pj

)
=

∂

∂qj

(
Pi
∂Qi

∂pk

)
(1.2.10)

∂

∂t

(
Pi
∂Qi

∂qj
− pj

)
=

∂

∂qj

(
Pi
∂Qi

∂t
+H −K

)
(1.2.11)

∂

∂t

(
Pi
∂Qi

∂pj

)
=

∂

∂pj

(
Pi
∂Qi

∂t
+H −K

)
(1.2.12)

Let us check that these relations are verified for a canonical transformation. The iden-
tity (1.2.10) can be expanded in the following way:

∂Pi
∂pk

∂Qi

∂qj
+ Pi

∂2Qi

∂pk∂qj
− δkj =

∂Pi
∂qj

∂Qi

∂pk
+ Pi

∂2Qi

∂qj∂pk

or

∂Pi
∂pk

∂Qi

∂qj
− ∂Pi
∂qj

∂Qi

∂pk
− δkj = Pi

(
∂2Qi

∂qj∂pk
− ∂2Qi

∂pk∂qj

)
The right member is obviously zero. The left one is also zero, as a consequence of
Equations (1.2.2), (1.2.3) and (1.2.4). In fact we can write

· · ·

The identity (1.2.11) can be rewritten as

∂Pi
∂t

∂Qi

∂qj
=
∂Pi
∂qj

∂Qi

∂t
+

∂

∂qj
(H −K)

and using Eq. (1.2.7) and Eq. (1.2.8) we get(
∂Qi

∂qj
∂

∂Qi
+
∂Pi
∂qj

∂

∂Pi

)
(H −K) =

∂

∂qj
(H −K)

which is obviously verified. In the same way the identity (1.2.12) gives

∂Pi
∂t

∂Qi

∂pj
=
∂Pi
∂pj

∂Qi

∂t
+

∂

∂pj
(H −K)
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and using again Eq. (1.2.7) and Eq. (1.2.8)(
∂Qi

∂pj
∂

∂Qi
+
∂Pi
∂pj

∂

∂Pi

)
(H −K) =

∂

∂pj
(H −K)

which is also verified.
We proved that dF is an exact differential. This give us an algorithm to generate

the canonical transformation. For each i let us choose two functionally independent
coordinates, one in the set

{
pi, q

i
}

and one in the set
{
Pi, Q

i
}
. To give an example,

let us suppose that it is possible to choose all the qi’s and all the Qi’s. In this we can
write (1.2.9) as

∂F

∂Qi
dQi +

∂F

∂qi
dqi +

∂F

∂t
= PidQ

i −Kdt− pidqi +Hdt

getting

Pi =
∂F

∂Qi

pi = −∂F
∂qi

K = H − ∂F

∂t
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