1.2. Canonical transformations

Let us suppose that a mechanical system is described by a set of canonical coordinates p_{i}, q^{i} and by an Hamiltonian $H\left(p_{i}, q^{i}, t\right)$ in such a way that the motion equations are given by

$$
\begin{aligned}
\dot{p}_{i} & =-\frac{\partial H}{\partial q^{i}} \\
\dot{q}^{i} & =\frac{\partial H}{\partial p_{i}}
\end{aligned}
$$

We want to introduce a new set of coordinates

$$
\begin{align*}
P_{i} & =P_{i}(p, q, t) \\
Q^{i} & =Q^{i}(p, q, t) \tag{1.2.1}
\end{align*}
$$

in such a way that

$$
\begin{align*}
\left\{Q^{i}, Q^{j}\right\}_{p, q} & =0 \tag{1.2.2}\\
\left\{P_{i}, P_{j}\right\}_{p, q} & =0 \tag{1.2.3}\\
\left\{Q^{i}, P_{j}\right\}_{p, q} & =\delta_{j}^{i} \tag{1.2.4}
\end{align*}
$$

where the Poisson brackets of two functions are defined by

$$
\{A, B\}_{p, q}=\frac{\partial A}{\partial q^{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q^{i}}
$$

and a sum over repeated indices is understood. We will call the (1.2) a canonical transformation.

1.2.1. A canonical transformation leaves the equation of motion in Hamiltonian form

Now we ask the following question: is it possible to introduce a new Hamiltonian function K in such a way that

$$
\begin{align*}
\dot{P}_{i} & =-\frac{\partial K}{\partial Q^{i}} \tag{1.2.5}\\
\dot{Q}^{i} & =\frac{\partial K}{\partial P_{i}} \tag{1.2.6}
\end{align*}
$$

If this is true, we can expand the total time derivative in 1.2 .6 obtaining

$$
\begin{aligned}
\frac{\partial K}{\partial P_{i}} & =\frac{\partial Q^{i}}{\partial q^{j}} \dot{q}^{j}+\frac{\partial Q^{i}}{\partial p_{j}} \dot{p}_{j}+\frac{\partial Q^{i}}{\partial t} \\
& =\frac{\partial Q^{i}}{\partial q^{j}} \frac{\partial H}{\partial p_{j}}-\frac{\partial Q^{i}}{\partial p_{j}} \frac{\partial H}{\partial q^{j}}+\frac{\partial Q^{i}}{\partial t} \\
& =\frac{\partial Q^{i}}{\partial q^{j}}\left(\frac{\partial H}{\partial Q^{k}} \frac{\partial Q^{k}}{\partial p_{j}}+\frac{\partial H}{\partial P_{k}} \frac{\partial P_{k}}{\partial p_{j}}\right)-\frac{\partial Q^{i}}{\partial p_{j}}\left(\frac{\partial H}{\partial Q^{k}} \frac{\partial Q^{k}}{\partial q^{j}}+\frac{\partial H}{\partial P_{k}} \frac{\partial P_{k}}{\partial q^{j}}\right)+\frac{\partial Q^{i}}{\partial t} \\
& =\frac{\partial H}{\partial Q^{k}}\left(\frac{\partial Q^{i}}{\partial q^{j}} \frac{\partial Q^{k}}{\partial p_{j}}-\frac{\partial Q^{i}}{\partial p_{j}} \frac{\partial Q^{k}}{\partial q^{j}}\right)+\frac{\partial H}{\partial P_{k}}\left(\frac{\partial Q^{i}}{\partial q^{j}} \frac{\partial P_{k}}{\partial p_{j}}-\frac{\partial Q^{i}}{\partial p_{j}} \frac{\partial P_{k}}{\partial q^{j}}\right)+\frac{\partial Q^{i}}{\partial t} \\
& =\frac{\partial H}{\partial Q^{k}}\left\{Q^{i}, Q^{k}\right\}_{p, q}+\frac{\partial H}{\partial P_{k}}\left\{Q^{i}, P_{k}\right\}_{p, q}+\frac{\partial Q^{i}}{\partial t} \\
& =\frac{\partial H}{\partial P_{i}}+\frac{\partial Q^{i}}{\partial t}
\end{aligned}
$$

and in the same way, expanding (1.2.5),

$$
\begin{aligned}
-\frac{\partial K}{\partial Q^{i}} & =\frac{\partial P_{i}}{\partial p_{j}} \dot{p}_{j}+\frac{\partial P_{i}}{\partial q^{j}} \dot{q}_{j}+\frac{\partial P_{i}}{\partial t} \\
& =-\frac{\partial P_{i}}{\partial p_{j}} \frac{\partial H}{\partial q^{j}}+\frac{\partial P_{i}}{\partial q^{j}} \frac{\partial H}{\partial p_{j}}+\frac{\partial P_{i}}{\partial t} \\
& =-\frac{\partial P_{i}}{\partial p_{j}}\left(\frac{\partial H}{\partial Q^{k}} \frac{\partial Q^{k}}{\partial q^{j}}+\frac{\partial H}{\partial P_{k}} \frac{\partial P_{k}}{\partial q^{j}}\right)+\frac{\partial P_{i}}{\partial q^{j}}\left(\frac{\partial H}{\partial Q^{k}} \frac{\partial Q^{k}}{\partial p_{j}}+\frac{\partial H}{\partial P_{k}} \frac{\partial P_{k}}{\partial p_{j}}\right)+\frac{\partial P_{i}}{\partial t} \\
& =\frac{\partial H}{\partial Q^{k}}\left(\frac{\partial P_{i}}{\partial^{j}} \frac{\partial Q^{k}}{\partial p_{j}}-\frac{\partial Q^{k}}{\partial q^{j}} \frac{\partial P_{i}}{\partial p_{j}}\right)+\frac{\partial H}{\partial P_{k}}\left(\frac{\partial P_{i}}{\partial q^{j}} \frac{\partial P_{k}}{\partial p_{j}}-\frac{\partial P_{i}}{\partial p_{j}} \frac{\partial P_{k}}{\partial q^{j}}\right)+\frac{\partial P_{i}}{\partial t} \\
& =\frac{\partial H}{\partial Q^{k}}\left\{P_{i}, Q^{k}\right\}_{p, q}+\frac{\partial H}{\partial P_{k}}\left\{P_{i}, P_{k}\right\}_{p, q}+\frac{\partial P_{i}}{\partial t} \\
& =-\frac{\partial H}{\partial Q^{i}}+\frac{\partial P_{i}}{\partial t}
\end{aligned}
$$

It follows that

$$
\begin{align*}
\frac{\partial Q^{i}}{\partial t} & =-\frac{\partial(H-K)}{\partial P_{i}} \tag{1.2.7}\\
\frac{\partial P_{i}}{\partial t} & =\frac{\partial(H-K)}{\partial Q^{i}} \tag{1.2.8}
\end{align*}
$$

Now we want to show that the differential

$$
\begin{equation*}
d F=P_{i} d Q^{i}-K d t-p_{i} d q^{i}+H d t \tag{1.2.9}
\end{equation*}
$$

is exact if and only if the transformation is canonical. We start by expressing $d F$ in terms of the differentials $d p_{i}, d q^{i}$ and $d t$ only:

$$
\begin{aligned}
d F & =P_{i}\left(\frac{\partial Q^{i}}{\partial q^{j}} d q^{j}+\frac{\partial Q^{i}}{\partial p_{j}} d p_{j}+\frac{\partial Q^{i}}{\partial t} d t\right)-K d t-p_{i} d q^{i}+H d t \\
& =\left(P_{i} \frac{\partial Q^{i}}{\partial q^{j}}-p_{j}\right) d q^{j}+P_{i} \frac{\partial Q^{i}}{\partial p_{j}} d p_{j}+\left(P_{i} \frac{\partial Q^{i}}{\partial t}+H-K\right) d t
\end{aligned}
$$

The necessary and sufficient condition is the equality of mixed derivatives, namely it must be

$$
\begin{align*}
\frac{\partial}{\partial p_{k}}\left(P_{i} \frac{\partial Q^{i}}{\partial q^{j}}-p_{j}\right) & =\frac{\partial}{\partial q^{j}}\left(P_{i} \frac{\partial Q^{i}}{\partial p_{k}}\right) \tag{1.2.10}\\
\frac{\partial}{\partial t}\left(P_{i} \frac{\partial Q^{i}}{\partial q^{j}}-p_{j}\right) & =\frac{\partial}{\partial q^{j}}\left(P_{i} \frac{\partial Q^{i}}{\partial t}+H-K\right) \tag{1.2.11}\\
\frac{\partial}{\partial t}\left(P_{i} \frac{\partial Q^{i}}{\partial p^{j}}\right) & =\frac{\partial}{\partial p_{j}}\left(P_{i} \frac{\partial Q^{i}}{\partial t}+H-K\right) \tag{1.2.12}
\end{align*}
$$

Let us check that these relations are verified for a canonical transformation. The identity 1.2 .10 can be expanded in the following way:

$$
\frac{\partial P_{i}}{\partial p_{k}} \frac{\partial Q^{i}}{\partial q^{j}}+P_{i} \frac{\partial^{2} Q^{i}}{\partial p_{k} \partial q^{j}}-\delta_{j}^{k}=\frac{\partial P_{i}}{\partial q^{j}} \frac{\partial Q^{i}}{\partial p_{k}}+P_{i} \frac{\partial^{2} Q^{i}}{\partial q^{j} \partial p_{k}}
$$

or

$$
\frac{\partial P_{i}}{\partial p_{k}} \frac{\partial Q^{i}}{\partial q^{j}}-\frac{\partial P_{i}}{\partial q^{j}} \frac{\partial Q^{i}}{\partial p_{k}}-\delta_{j}^{k}=P_{i}\left(\frac{\partial^{2} Q^{i}}{\partial q^{j} \partial p_{k}}-\frac{\partial^{2} Q^{i}}{\partial p_{k} \partial q^{j}}\right)
$$

The right member is obviously zero. The left one is also zero, as a consequence of Equations $1.2 .2,1.2 .3$ and 1.2 .4 . In fact we can write

The identity 1.2.11 can be rewritten as

$$
\frac{\partial P_{i}}{\partial t} \frac{\partial Q^{i}}{\partial q^{j}}=\frac{\partial P_{i}}{\partial q^{j}} \frac{\partial Q^{i}}{\partial t}+\frac{\partial}{\partial q^{j}}(H-K)
$$

and using Eq. 1.2.7 and Eq. 1.2.8 we get

$$
\left(\frac{\partial Q^{i}}{\partial q^{j}} \frac{\partial}{\partial Q^{i}}+\frac{\partial P_{i}}{\partial q^{j}} \frac{\partial}{\partial P_{i}}\right)(H-K)=\frac{\partial}{\partial q^{j}}(H-K)
$$

which is obviously verified. In the same way the identity 1.2 .12 gives

$$
\frac{\partial P_{i}}{\partial t} \frac{\partial Q^{i}}{\partial p^{j}}=\frac{\partial P_{i}}{\partial p_{j}} \frac{\partial Q^{i}}{\partial t}+\frac{\partial}{\partial p_{j}}(H-K)
$$

and using again Eq. 1.2.7) and Eq. 1.2.8)

$$
\left(\frac{\partial Q^{i}}{\partial p^{j}} \frac{\partial}{\partial Q^{i}}+\frac{\partial P_{i}}{\partial p_{j}} \frac{\partial}{\partial P_{i}}\right)(H-K)=\frac{\partial}{\partial p_{j}}(H-K)
$$

which is also verified.
We proved that $d F$ is an exact differential. This give us an algorithm to generate the canonical transformation. For each i let us choose two functionally independent coordinates, one in the set $\left\{p_{i}, q^{i}\right\}$ and one in the set $\left\{P_{i}, Q^{i}\right\}$. To give an example, let us suppose that it is possible to choose all the q^{i} 's and all the $Q^{i}{ }^{\prime}$ s. In this we can write 1.2 .9 as

$$
\frac{\partial F}{\partial Q^{i}} d Q^{i}+\frac{\partial F}{\partial q^{i}} d q^{i}+\frac{\partial F}{\partial t}=P_{i} d Q^{i}-K d t-p_{i} d q^{i}+H d t
$$

getting

$$
\begin{aligned}
P_{i} & =\frac{\partial F}{\partial Q^{i}} \\
p_{i} & =-\frac{\partial F}{\partial q^{i}} \\
K & =H-\frac{\partial F}{\partial t}
\end{aligned}
$$

