
Charge Superselection

Arising from Random Electromagnetic Interactions∗

E. Fabri and G. Fiorio

Istituto di Fisica dell’Università – Pisa
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The rule of superselection of charge was first stated by Wick, Wightman,
Wigner(1) more than ten years ago; since then it has been thought of as a
fundamental rule of physics. No attempt has been made, as far as we know,
to explain that rule in terms of known facts; it has been only assumed as a new,
independent principle.

We want to show that the superselection rule for electric charge is produced
by the random electromagnetic interactions that a particle experiences in its
motion through a random assembly of atoms, like in a gas. (The result is prob-
ably true for liquids or solids also but a more careful analysis is needed in these
cases.)

Assume that on a particle at rest is acting a scalar potential V (t). If Q is the
charge operator, the potential energy is QV (t), and the Schrödinger equation
has the solution:
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On account of the electromagnetic interaction, the relative phase of two eigen-
states of Q, belonging to two consecutive eigenvalues, will change by
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in the time interval from 0 to t. If V (t) is a random function, δ(t) will also
exhibit random fluctuations, whose r.m.s. will increase as the square root of t
(for t sufficiently large, and for a stationary V (t)). When the r.m.s. of δ(t)
is somewhat larger than π, all phases are equally likely, and the pure charge state
of the particle has become a mixture; i.e., a superselection rule has prevailed.
The result is exactly the same as if a measurement of Q had been effected,
without reading the precise value.
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As a matter of fact, we will consider a particle moving at a constant speed
through a gas. In its rest reference frame, it will experience a scalar potential
when entering an atom. It is not difficult to show that

(

δ(t) − δ̄
)2

= 8π
nt

v

e2

h̄2

∞
∫

0

b db

(

∞
∫

0

dx V (r)

)2

(t very large), (3)

where n is the number of atoms per unit volume, v the particle velocity, b the
impact parameter with respect to the center of the atom, x the abscissa along
the path of the particle from the point of closest approach to the center of the
atom, r =

√
b2 + x2. V (r) is the electrostatic potential of the atom, assumed

spherically symmetric. (It should be noted that eq. (3) is exact even for relativis-
tic particles, on account of the shrinking of the potential and the simultaneous
dilatation of time.)

A calculation has been done, using for V (r) the Thomas–Fermi potential;
the resulting r.m.s. of δ(t) is greater or equal to π if

nlZ4/3

β2
� 2.4 · 1020 cm−2 (4)

(l = vt is the distance travelled by the particle; β = v/c). If we put β = 1,
n = 3 · 1019 cm−3, Z = 15 (rather unfavourable values) we get

l � 0.2 cm. (5)

A particle travelling several millimeters in a gas (or a corresponding distance
in a liquid or solid) will lose any phase relations among its charge eigenstates,
and this always happens in all present-day experiments on elementary parti-
cles. The superselection rule for charge, therefore, could possibly be due only to
experimental limitations.

A possible exception to the preceding considerations would be a particle
produced in a cloud chamber; in the first few millimeters of its track the phase
relations among different charge eigenstates would not be entirely lost, thus
providing an experimental situation where the superselection of charge should
not hold. It should be noted, however, that in our calculation the atom was
assumed as a nucleus surrounded by a static cloud of negative charge: in that
model ionization effects cannot occur whereas they are important in a cloud
chamber. It is reasonable to assume that a refined model, allowing for ionization,
would lead to much bigger fluctuations of the electric potential, thus reducing
the “superselectionless” range to a fraction of one millimeter.

Further work is in progress on this subject.
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