	PROVA DI FISICA – 21/6/2005 - Corso di Laurea: \square STPA \square TACREC – a.a. 2004/05	
Nome e cognome:		
Problemi (riportate le risposte negli spazi appositi e allegate le brutte copie o altri appunti che ritenete necessari per capire le motivazioni delle vostre risposte; indicate sia la risposta "letterale" che, se richiesto, quella "numerica"; nei quesiti, fate una crocetta nel riquadro vicino alla risposta che ritenete giusta e, se richiesto, aggiungete una breve spiegazione, per esempio citando la legge o il principio fisico che credete opportuno)		
1) a)	Nel sistema di riferimento in figura, in cui l'asse X è parallelo al suolo, un'aquila vola alla quota costante $h=78.4$ m muovendosi di velocità rettilinea uniforme v diretta nel verso positivo dell'asse X . Per le risposte, considerate come puntiformi tutti gli oggetti in moto, e supponete trascurabili gli attriti, se non diversamente specificato. Sapete che all'istante $t_0=0$ l'aquila passa sulla verticale dell'origine del sistema di riferimento, cioè per il punto (x_0, h) , con $x_0=0$, mentre all'istante $t_1=6.0$ s essa si trova a passare per il punto (x_1, h) , con $x_1=48$ m. Quanto vale la velocità v dell'aquila?	
b)	$v = \dots = m/s$ Supponete ora che l'aquila porti tra i suoi artigli un sasso, e che gli artigli stessi si aprano all'istante t_l in modo che il sasso sia libero di cadere al suolo avendo, come velocità iniziale, quella dell'aquila. Dopo quanto tempo T il sasso raggiunge il suolo? [Usate il valore $g = 9.8 \text{ m/s}^2$ per l'accelerazione di gravità] $T = \dots = \dots = s$	
c)	Facendo riferimento al sistema di figura, quanto vale la coordinata x_S del sasso quando questo raggiunge il suolo? $x_S = \dots = \dots = m$	
d)		
e)	Considerate ora l'attrito tra sasso ed aria; supponendo che esso agisca solo in direzione verticale e che possa essere considerato di tipo viscoso con un coefficiente di attrito $\beta = 0.10$ N s/m, quanto vale la componente verticale v_L della velocità del sasso subito prima che questo raggiunga il suolo? [Supponete che l'attrito agisca in modo da "limitare" la velocità del sasso] $v_L = \dots = m/s$	
2)	Una certa quantità di gas perfetto è contenuta in un recipiente cilindrico di sezione $S = 9.8 \text{ cm}^2$ dotato di un tappo di massa $m = 5.0 \text{ Kg}$ che può scorrere in direzione verticale con attrito trascurabile e che è in contatto con la pressione atmosferica P_{ATM} . Inizialmente, il sistema è in equilibrio alla temperatura $T_0 = 300 \text{ K}$ e viene quindi riscaldato fino alla temperatura $T_1 = 450 \text{ K}$.	
a)	Sapendo che inizialmente la colonna di gas ha altezza $h_0 = 40$ cm (vedi figura), quanto vale l'altezza h_1 della colonna di gas quando questo si trova alla temperatura T_1 ? [Supponete che la trasformazione sia stata reversibile] $h_1 = \dots = \dots$ cm	
b)	Quanto vale il lavoro L compiuto (o subito) dal gas? [Specificatene anche il segno, considerate il valore $P_{ATM} = 1.0 \times 10^5$ Pa per la pressione atmosferica e il valore $g = 9.8$ m/s ² per l'accelerazione di gravità] $L = \dots$ J	

c)	Che relazione esiste tra lavoro L e quantità di calore Q fornita al gas nella trasformazione considerata? Selezionate la risposta corretta e datene una spiegazione sintetica di seguito. $\square \ Q = L \qquad \square \ Q > L \qquad \square \ Q < L$ Spiegazione sintetica della risposta:	
	Quesiti	
a.	La forza di attrito statico massima tra una cassa ed un piano orizzontale ha modulo, F . Come è la forza di attrito F ' tra la stessa cassa ed un piano inclinato ? [Il coefficiente di attrito è lo stesso nei due casi] $\Box F' = F \qquad \Box F' < F \qquad \Box F' > F$ Spiegazione sintetica della risposta:	
b.	Nell'urto elastico tra due biglie di massa diversa si conserva: ☐ la quantità di moto di ogni singola biglia ☐ quantità di moto ed energia cinetica del sistema delle due biglie ☐ nessuna di queste grandezze Spiegazione sintetica della risposta:	
c.	In una centrifuga da laboratorio la forza dipende dal raggio in modo: ☐ direttamente proporzionale ☐ inversamente proporzionale ☐ non dipende dal raggio Spiegazione sintetica della risposta: ☐ non dipende dal raggio	
d.	Per un fluido ideale in moto stazionario in un condotto (senza perdite né sorgenti) il teorema di continuità stabilisce che la sua velocità è: ☐ uniforme qualsiasi sia la sezione del condotto ☐ direttamente proporzionale alla sezione del condotto ☐ inversamente proporzionale alla sezione del condotto ☐ non si può dire Spiegazione sintetica della risposta:	
e.	Avete due resistori elettrici diversi fra loro collegati in parallelo . Potete affermare che: □ nei due resistori scorre la stessa corrente □ i due resistori dissipano la stessa potenza □ la differenza di potenziale ai capi dei due resistori è la stessa □ nessuna di queste affermazioni Spiegazione sintetica della risposta: □ nessuna di queste affermazioni	
Quesiti per studenti immatricolati nel 2004 che $\underline{\mathrm{non}}$ hanno superato il test del 25/11/2004 o in data successiva		
	La massa di un corpo è una grandezza: □ vettoriale □ scalare □ adimensionata □ quadratica La massa di una sfera di raggio <i>R</i> fatta di un certo materiale omogeneo vale <i>m</i> . Quanto vale la massa di una sfera dello stesso	
3)	materiale ma di raggio $2R$? $\square m \qquad \square 2m \qquad \square m/2 \qquad \square 8m$ Un corpo puntiforme su cui agisce una forza costante ha:	
4)	□ velocità nulla □ accelerazione costante ed uniforme □ velocità costante ed uniforme Se misurate la massa in Kg e le lunghezze in m, la densità di massa (rapporto massa/volume) si misura in:	
	□ Kg/m³ □ Kg m³ □ Kg/m □ Kg m Lo spazio percorso da un corpo che si muove con velocità rettilinea uniforme è:: □ nullo □ direttamente proporzionale al tempo □ inversamente proporzionale al tempo	
qua	a: acconsento che l'esito della prova venga pubblicato sul sito web del docente, http://www.df.unipi.it/~fuso/dida , impiegando come nominativo le ultime ttro cifre del numero di matricola, oppure il codice: (4 caratteri alfanumerici). Firma:	