ESERCIZI DI FISICA GENERALE - nr. 11/07

- 1. Un semplice modello "classico" per l'atomo di idrogeno prevede che esso sia composto da un elettrone, di carica $q = -e = -1.6 \times 10^{-19}$ C e massa $m = 9.0 \times 10^{-31}$ kg, che ruota con velocità uniforme e costante attorno ad un protone dotato di carica $Q = e = 1.6 \times 10^{-19}$ C e massa $M = 1.6 \times 10^{-27}$ kg.

 a) Sapendo che il raggio dell'orbita vale $R = a_0 = 5.0 \times 10^{-11}$ m, quanto vale l'**energia cinetica** E_{K0}
 - a) Sapendo che il raggio dell'orbita vale $R = a_0 = 5.0 \times 10^{-11}$ m, quanto vale l'**energia cinetica** E_{KO} dell'elettrone? [Trascurate ogni effetto dovuto alla gravità, ed usate il valore $\kappa = 9.0 \times 10^9$ Nm²/C² per la costante della forza elettrica]

b) A causa di una perturbazione esterna (che non specifichiamo!), il raggio dell'orbita diventa $R' = 2a_0 = 1.0 \times 10^{-10}$ m. Quanto vale il lavoro L_E compiuto dalle forze di natura elettrica nel corso del processo? [Può farvi comodo ricordare la seguente regolina di integrazione indefinita per una variabile ξ generica (n \neq -1): $\int \xi^n d\xi = \xi^{n+1}/(n+1)$]

- 2. Un sistema è costituito da due masse puntiformi m unite tra loro da una molla di massa trascurabile, lunghezza a riposo l e costante elastica k. Inizialmente la molla è tenuta compressa per una lunghezza Δ da un filo, e la congiungente le due masse si trova in direzione orizzontale.
 - a) Riferendovi ad un sistema di riferimento con l'origine nel punto medio della congiungente le due masse, l'asse X orizzontale e l'asse Y verticale e diretto verso il basso, quali sono le coordinate x_{CM} ed y_{CM} del centro di massa del sistema?

 $x_{CM} =:$ 0 [il CM è fra le due masse] $y_{CM} =:$ 0 [per come si è scelto il sistema di riferimento]

b) Ad un dato istante, che porremo t = 0, questo filo si rompe, e, contemporaneamente, il sistema viene lasciato cadere da una certa altezza sotto l'azione della gravità g. Come si scrivono le equazioni del moto $x_{CM}(t)$ ed $y_{CM}(t)$ del centro di massa per t > 0? [Trascurate ogni forma di attrito]

c) Come si scrivono, in funzione dei dati del problema (e del tempo), le forze $F_{1X}(t)$ ed $F_{2X}(t)$ che agiscono rispettivamente sulle masse 1 e 2? (Chiamate $x_1(t)$ ed $x_2(t)$ le coordinate orizzontali delle due masse, considerate solo le componenti orizzontali delle forze, cioè solo le forze dovute alla compressione/estensione della molla, e state attenti ai segni)

d) Come si scrive l'equazione del moto relativo lungo X del sistema, ovvero l'equazione per l'accelerazione relativa $a_{REL,x}(t) = a_{2,x}(t) - a_{1,x}(t)$?

 $a_{REL,x}(t) =: \dots a_{2x}(t) - a_{1x}(t) = F_{2x}(t)/m_2 - F_{1x}(t)/m_1 = k[(x_1-x_2-l)/m_2-(l-x_1+x_2)/m_1] = (2k/m)((x_1-x_2)-l)$ [la soluzione ottenuta è la stessa che si ottiene considerando l'equazione del moto **relativo** $F_{INT} = \mu a_{REL}$, con $\mu = m_1 m_2/(m_1+m_2)$ massa ridotta del sistema]

3. In un esperimento di collisioni fra particelle cariche, un protone (massa $m = m_A$ e carica q = e) viene inviato contro una particella alfa (massa $M = 4m_A$ e carica Q = 2e). Le due particelle **inizialmente** si trovano a **distanza relativa così grande** che l'interazione elettrica può essere considerata **trascurabile**, e si muovono

lungo l'asse X di un sistema di riferimento essendo dotate di velocità rispettivamente $v = v_0$ e $V = -v_0$. Ogni forma di attrito o dissipazione ed ogni forza diversa dall'interazione elettrica (interna al sistema!) sono **trascurabili** ed il processo può essere considerato unidimensionale (la dinamica si svolge solo lungo l'asse X). Le particelle si avvicinano quindi l'un l'altra fino a trovarsi alla distanza relativa minima d_{MIN} per poi successivamente riallontanarsi. [I valori numerici rilevanti per il problema sono: $m_A = 1.6 \times 10^{-27}$ kg, $e = 1.6 \times 10^{-19}$ C, $v_0 = 2.0 \times 10^2$ m/s; la costante della forza elettrica è $\kappa_E = 1/(4\pi\epsilon_0) = 9.0 \times 10^9$ N m²/C²]

a) Quanto vale la velocità v_{CM} del **centro di massa del sistema** nell'istante in cui viene raggiunta la minima distanza relativa?

$$v_{CM} = \dots = m/s \qquad (mv + MV)/(m + M) = -(3/5)v_0 = -1.2x10^2$$

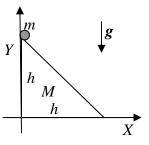
m/s [il processo è un urto (centrale) fra due particelle; non essendoci forze esterne si conserva la quantità di moto totale del sistema e la velocità del centro di massa del sistema è costante durante tutto il processo. In particolare, essa rimane sempre al valore iniziale, da cui la soluzione]

b) Come si esprime il lavoro L che la forza elettrica di interazione esegue dall'istante iniziale a quello in cui viene raggiunta la minima distanza relativa? [Non dovete dare una risposta numerica, ma solo esprimere L in funzione dei dati del problema e della distanza minima d_{MIN}]

L= - $\Delta \underline{U_{ELE}}=$ - $\kappa_{\rm E}\,qQ/d_{MIN}=$ - $\kappa_{\rm E}\,2e^2/d_{MIN}$ [si è tenuto conto che inizialmente la distanza tra le cariche è praticamente infinita, e quindi l'energia elettrica è praticamente nulla]

c) Quanto vale, in modulo, la distanza minima relativa d_{MIN} fra le due particelle? [Suggerimento: attenti a considerare le risposte dei punti precedenti!]

4. Una massa puntiforme m si trova ferma sulla sommità di un piano inclinato la cui sezione è costituita da un triangolo rettangolo isoscele con cateti lunghi h (vedi figura). La massa può scivolare **senza attrito** lungo il piano. Il piano inclinato è poggiato su un piano orizzontale su cui può scorrere a sua volta **senza attrito**. Per le risposte usate un sistema di riferimento cartesiano XY centrato sul vertice retto del piano inclinato, come in figura (ovviamente questo sistema di riferimento è solidale con il piano orizzontale, cioè rimane fisso durante l'eventuale moto del piano inclinato). La massa del piano inclinato vale M e, rispetto a questo sistema di riferimento, il centro di massa del **solo piano inclinato** si trova nella posizione di coordinate $X_{CM} = h/2$ e $Y_{CM} = h/2$ (la posizione lungo Z non è rilevante).



a) Quali sono le coordinate X_{TOT} ed Y_{TOT} che individuano la posizione sul piano del centro di massa dell'**intero sistema** (piano+massa puntiforme)?

$$X_{TOT} = MX_{CM}/(M+m) = Mh/(2(M+m))$$

 $Y_{TOT} = (MY_{CM}+mh)/(M+m) = h(M/2+m)/(M+m)$ [per

definizione]

b) La massa viene lasciata libera di muoversi sotto l'azione della gravità e si osserva che anche il piano inclinato si muove (in direzione orizzontale). Lungo quale direzione il sistema può essere considerato "isolato"? Commentate:

la direzione *X*, lungo la quale non agiscono forze esterne al sistema (che sono solo verticali, dato che sono costituite da forza peso e reazione vincolare che il piano orizzontale esercita verticalmente sulla base del piano inclinato)

c) In quale posizione X' si viene a trovare il centro di massa del **solo piano inclinato** quando la massa puntiforme raggiunge il fondo del piano inclinato stesso?

 $X' = X_{TOT} - (h/2)(m/(m+M)) = (h/2)(M-m)(M+m)$ [il sistema è isolato lungo l'asse X, ed essendo il sistema fermo all'inizio, la coordinata orizzontale del **centro di massa totale** del sistema rimane inalterata e pari costantemente a X_{TOT} . Deve quindi essere: $X_{TOT} = (mx' + MX')/(m+M)$, dove x' è la coordinata della massa puntiforme quando questa si trova alla fine del piano inclinato. Attenzione, perché tale coordinata è misurata nel sistema di riferimento fisso: tenendo conto che in un riferimento solidale al piano la massa parte da 0 e percorre uno spazio orizzontale h, e che questo riferimento si trova spostato di una lunghezza pari alla differenza tra posizione orizzontale finale ed iniziale del CM del **piano inclinato**, si ha $x'=h+X'-X_{CM}=h/2+X'$. Manipolando algebricamente si ha la risposta]