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Quantum confinement (in semiconductors):
optical properties of
quantum wells, wires, dots



OUTLOOK

There are very many properties depending on size and dimensionality: among them, optical
properties (e.g., absorption and emission, but not only, as we will see in the following)

Dealing with nanosized and eventually anisotropically-shaped (2-D, 1-D, 0-D) semiconductor
particles leads confinement effect to play an important role
—> optical properties different with respect to bulk counterparts

Motivations for our interest (here and now):

- quantum confinement is a too relevant topic to be underestimated, which you will eventually
corroborate with other consequences (e.g., electrical trasnport) in other courses

- this is an opportunity to revise a few basic quantum mechanics, an always useful task

- a huge variety of devices exists which are based on quantum confinement: they include, e.g.,
quantum dots sometimes used in labeling samples to be observed by microscopy (already seen
something related to that)

Today'’'s menu:

- Finger food consisting of quantum mechanics basics (cats
excluded!)

- Main course of confinement effects in slices (quantum
wells), garnished with a few spaghetti (quantum wires)
and caviar spheres (quantum dots)

- Colourful balls, coated and uncoated, for dessert
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ULTRA-SHORT PRIMER OF QM

Effects of quantum mechanics (QM) are dominant in many systems (typically, involving small, fast
particles): they are essential to understand absorption/emission processes involving electrons

Starting points of QM:
wave-matter complementarity (or dualism), that means, e.g., an e.m. wave can be
represented by particles (photons) and particles can be represented by waves

Basic QM tool (consequence of the dualism above):

Wavefunction W(r,t) to describe a quantum particle

- probabilistic approach: |W(r,t)|? represents the probability to find the particle in r, r+dr
—> the concept of trajectory does not apply any more!!

Indeed the uncertainty principle (a theorem, truly) states, e.g., in 1-D case:

AxAp, = 7/2

For instance, the more precisely the position of some particle is determined, the less
precisely its momentum can be known, and vice versa.['! The original heuristic argument that such a
limit should exist was given by Werner Heisenberg in 1927, after whom it is sometimes named the
Heisenberg principle

http://www.df.unipi.it/~fuso/dida NANO_1 6 04 0 3/30



SCHROEDINGER

Main problem of the mechanics:
- To predict r(t) e v(t) (trajectory) based on knowledge of forces F
- Main tool: equation of motion (Newton) a = F/m

Main problem of QM:
- To determine W (r,t) starting from the knowledge of local potentials
- Main tool: Schroedinger’s equation (non relativistic situations!).

2 -
—h—Vz‘P(F,t) +V(F,t)=ih o (7.1)
2m ot

. Py A R P . .
with V°W(7,t)= -+ —+— |Y(7,) (in cartesian coordinates)
ox~ dy~ Jdz

V(rt) is the potential, typically depending on r,t, ruling the dynamics of the object
Note: classically potential and force are related through F=- VU

Schroedinger equation in the 1-D case:
B’ 02 L 0W(x,t (partial derivatives
———Y(x,0)+V(x,t)=ih (x,1) equation)
2m dx ot
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CONCEPTUAL BASIS OF SCHROEDINGER

1. It must be consistent with the de Broglie-Einstein postulates, (5-8)

A=h/p and v=E/h
2. It must be consistent with the equation
E=p2m+V (5-9

relating the total energy E of a particle of mass m to its kinetic energy p?/2m and
its potential energy V.

3. It must be linear in W(x,2). That is, if ¥,(x,) and W,(x,t) are two different
solutions to the equation for a given potential energy ¥ (we shall see that partial
differential equations have many solutions), then any arbitrary linear combination of
these solutions, W(x,t) = ¢, ¥ (x.t) + ¢,¥,(x,t), is also a solution. This combination is
said to be linear since it involves the first (linear) power of W,(x,t) and W,(x,); it is
said to be arbitrary since the constants ¢, and ¢, can have any (arbitrary) values.
This linearity requirement ensures that we shall be able to add together wave Sfunctions
to produce the constructive and destructive interferences that are so characteristic of
waves. Interference phenomena are commonplace for electromagnetic waves; all the
diffraction patterns of physical optics are understood in terms of the addition of
electromagnetic waves. But the Davisson-Germer experiment, and others, show that
diffraction patterns are also found in the motion of electrons, and other particles.
Therefore, their wave functions also exhibit interferences, and so they should be
capable of being added.

4. The potential energy V is generally a function of x, and possibly even ¢. How-
ever, there is an important special case where

Vixt) =V, (5-10)

This is just the case of the free particle since the force acting on the particle is
given by

F = —0V(x,t)/ox

which yields F = 0 if V, is a constant. In this case Newton’s law of motion tells us
that the linear momentum p of the particle will be constant, and we also know that
its total energy E will be constant. We have here the situation of a free particle with
constant values of A = h/p and v = E/h, discussed in Chapter 3. We therefore assume
that, in this case, the desired differential equation will have sinusoidal traveling wave
solutions of constant wavelength and frequency, similar to the sinusoidal wave func-
tion, (5-1), considered in that chapter.

Using the de Broglie-Einstein relations of assumption 1 to write the energy equa-
tion of assumption 2 in terms of A and v, we obtain

h?/2mA% + V(x,t) = hv

After R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, ..., Second Edition, Wiley, New York (1985)

The equation “must be” as it is...

In order to satisfy the linearity assumption 3, it is necessary that every term in the
differential equation be linear in ¥(x,), ic., be proportional to the first power of
W(x,t). Note that any derivative of W(x,t) has this property. For instance, if we con-
sider the change in the magnitude of 3*¥(x,t)/dx* that results if we change the mag-
nitude of ¥(x,t), say by a factor of ¢, we see that the derivative increases by the same
factor and thus is proportional to the first power of the function. This is true since

*[cP(x)] . 07P(x,t)
x: 7 ox?

where ¢ is any constant. In order that the differential equation itself be linear in
¥(x,t), it cannot contain any term which is independent of W(x,t), i.e., which is pro-
portional to [W(x,t)]° or which is proportional to [¥(x,f)]? or any higher power.
After obtaining the equation, we shall demonstrate explicitly that it is linear in Y(x,t),
and in the process the validity of these statements will become apparent.

Now let us use the assumption 4, which concerns the form of the free particle
solution. As suggested by that assumption, we shall first try to write an equation
containing the sinusoidal wave function, (5-1), and/or derivatives of that wave func-
tion. We have already evaluated some of the derivatives in Examples 5-1. Inspecting
these, we see that the effect of taking the second space derivative is to introduce a
factor of —k2, and the effect of taking the first time derivative is to introduce a factor
of — . Since the differential equation we seek must be consistent with (5-12), which
contains a factor of k2 in one term and a factor of @ in another, these facts suggest
that the differential equation should contain a second space derivative of ¥(x,t) and
a first time derivative of W(x,t). But there must also be a term containing a factor of
V(x.t) because it is present in (5-12). In order to ensure linearity, this term must con-
tain a factor of ¥(x,t). Putting all these ideas together, we try the following form for
the differential equation

A*¥(x,t)
ox?
The constants a and B have values which remain to be determined. They are used to

provide flexibility which, we might guess, will be needed in fitting (5-13) to the various
requirements it must satisfy.

o + V(x,)¥(x,t) = 8

W(x,t)
T (5-13)
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EIGENSTATES AND EIGENVALUES

If V does not depend on time, V(x) only, then: s

—i—t

Y(x,0) =y (0)e(t)  with p(t)=e "

and
h> d°
Y p(x)+V(x) = Ey(x)

Steady-state Schroedinger equation

5-6 REQUIRED PROPERTIES OF EIGENFUNCTIONS

- In the following section we shall consider, in a very general way, the problem of
finding solutions to the time-independent Schroedinger equation. These consider-

The wavefunction for Steady state ations will show that energy quantization appears quite naturally in the Schroedinger

prob|ems can factorized!! theory. We shall see that this extremely significant property results from the fact that
acceptable solutions to the time-independent Schroedinger equation can be found

only for certain values of the total energy E.
To be an acceptable solution, an eigenfunction y(x) and its derivative dy/(x)/dx are
required to have the following properties:

y(x) : eigenfunction (eigenstate)

E : energy eigenvalue Y(x) must be finite. dys(x)/dx must be finite.
¥(x) must be single valued. dy(x)/dx must be single valued.
¥(x) must be continuous. dy(x)/dx must be continuous.
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MATHEMATICS OF STEADY-STATE EQ

rwALL N wwmAsa e =y v ———

Substituting the assumed form of the solution, ¥(x,t) = ¥(x)¢(t), into the Schroe-
dinger equation, and also restricting ourselves to time-independent potential energies
that can be written as V(x), we obtain

h? 02 t
B wa(x);p(r) + Vi 0apt) = in 2120
Now
2 2 d2
0 dféx)zqo(t) () d -If(x) - o) dtl;(X)

the notation 8%(x)/dx? being redundant with d?y(x)/dx? since y(x) is a function of x
alone. Similarly

5, o
*1/(35)¢(t) — yin 220 (p(t) - i )dw(t)
Therefore, we have
2 2
2007 L 4 V900 = i 220

Dividing both sides of this cquatlon by ¥(x)e(t), we obtain

L[ A YK 1 e
‘f’(x)l: 2m  dx® + V(x)\l’(x):l = lh;&(?)T

Note that the right side of (5-36) does not depend on x, while the left side does not
depend on t. Consequently, their common value cannot depend on either x or ¢. In
other words, the common value must be a constant, which we shall call G. The result
of this consideration is that (5-36) leads to two separate equations. One equation is
obtained by setting the left side equal to the common value

1 2 42
Y(x) [_ 2m dd;(zx) + V(x}t/f(x)] =G

The other equation is obtained by setting the right side equal to the common value
1 do(r) _
o) dr

T_hc constant G is called the separation constant, for the same reason that this tech-
nique for solving partial differential equations is called the separation of variables.

(5-36)

(5-37)

(5-38)

do(t) G

d h

This differential equation tells us that the function ¢(f), which is its solution, has the

property that its first derivative is proportional to the function itself. Anyone with

much experience in differentiating would not have difficulty in guessing that ¢(f) must

be an exponent1al function. Therefore, let us assume that the solution to the differ-
ential equation is of the form v

oty = e
where a is a constant that will be determined shortly. We verify this assumed solution
by differentiating it, to obtain

oft) (5-39)

do(t)
Tdt

which we then substitute into (5-39). This yields

= ae™ = ap(t)

ap{t) = —— <p(t)
If we set

a=——

h
the assumed solution obviously satisfies the equation. Therefore
oft) = e 16U (5-40)

is a solution to (5-38) or (5-39).

We see that ¢(t) is an oscillatory function of time of frequency v = G/h. But, according
to the de Broglie-Einstein postulates of (5-8), the frequency must also be given by
v = E/h, where E is the total energy of the particle associated with the wave function
corresponding to ¢(t). The reason is, of course, that ¢(t) is the function that specifies
the time dependence of the wave function. Comparing these expressions, we see that
the separation constant must be equal to the total energy of the particle. That is

G=E (5-42)
Using this value of G in the space equation, (5-37), that we obtained from the
separation of variables, we have

h? d*y(x)

2m  dx?

+ V(xW(x) = Eg(x) (5-43)

After R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, ..., Second Edition, Wiley, New York (1985)
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A good solution of the
Schroedinger equation is:

EXAMPLE 1: FREE PARTICLE

A free particle (e.g., a photon!) which does not interact at all V=0
and moves along the X axis having a well defined impulse p

&—
p

v

W(x,1) o e =y (x)e()

(de Broglie wave)

de Broglie wavelength: A g=21/k = h/p

A “little” problem: it is |W|? = 1 everywhere
- the probability of finding the particle is always 1
> the normalization factor | |y|? dx diverges!

(in agreement with uncertainty: Ap =0 2> Ax — «)

Adding several waves of different wavelength
together will produce an interference

pattern which begins to localize the wave.
14—

But that process spreads the wave number k
values and makes it more uncertain. This

is an inherent and inescapable increase

in the uncertainty AK when AX is

decreased. Ak AX =~ 1

(solution to such “little” problem is in the concept of
wavepackets: the wavefunction of the free particle
results from superposition of many individual waves
with slightly different energy, frequency, wavenumber
and localization is achieved)
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EXAMPLE 2: POTENTIAL WELL (INFINITE)

A free particle moves along the X axis and feels two ) a X

(infinite) potential barriers at x = —-a/2 and x = +a/2 ) ]
—> >

0 0<z<a | p |

The potential reads: V(z) = {
x x<0;z>a

One can easily assume that the particle is bound to move within the two potential barriers
defining the well

¥(x,t) is given by superposition of a particle%oving to the left and one moving to the right

op g E
WY(x,1)= Ae'™™ 4 BTN i ®=—

Boundary conditions: ¢ =0 at x =-a/2 and x = a/2

4

A=B orA=-B

Note: the derivative of the wavefunction is here non continuous because V = «
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(LONGITUDINAL) CAVITY MODES IN OPTICS

. _ _ _ Ry=mw plane-parallel Ry~
Boundary conditions are identical to those of an “optical _ _
cavity” of the simplest configuration:
Two (perfectly reflecting) plane mirrors parallel each other
and placed at a relative distance a - =
a

v Steady-state solutions (standing waves) for the e.m. field
within the cavity can be found

v" The boundary conditions impose E = 0 at the mirror
surface (mirrors are reflective, they do not allow for
electric field in the material — e.g., a perfect conductor —
they are made of)

v Pictorially, the optical cavity allows only standing waves
with nodes on the mirror position /\/\/
An integer number of half-waves is allowed within the cavity /\/\/\

A 27r/kq

Supported modes: qi:a > g 5 :a%kq:qE /\/\/\/
a
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ENERGY QUANTIZATION

In the potential box: Y (x) = A(ei(kx) + ei(_kx)) oc cOS(kx) T
a a kn — n -
Boundary conditions: l//(x = ——) = l//(x = -I-—) =0 a
2 2
Being the particle free 2 ) 2 9 . :
within the box, the =P _ k™ 2 n'rm ;zﬁgf;;zzzgz':;?;n
energy is only kinetic " O29m 2m 2ma’ (only discrete levels can exist!)

and can be written as:
E

Note: n # 0
The energy of the ground state cannot be zero (to not

violate uncertainty principle)!

separation: IYma 2 ) ma?

2.2 1 2.2
Energy level AE:EHl_En:[(n_I_I)z_nz}h71'2:(”_'__]7172:

Examples forn = 1:
a ball with m = 0.1 kg in a box with a = 10 cm > AE~10%64 J Il
An electron with m ~ 10-3° kg in a box witha =1 nm > AE~1.5x1019J ~1 eV !l R
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FINITE POTENTIAL WELL

E3
23
| ! x
Ey 0
21
E
; 0 / \
-a/2 0 +a/2 - .
-a/2 0 +a/2

Boundary conditions do not lead anymore to ¥= 0 outside the well

Major consequences and differences with respect to the infinite case:

» there is a finite probability for the particle to tunnel outside the well

> there is a “leakage” of the wavefunction outside the well (keeping continuity of wavefunction and
of its first derivative)

» the number of allowed energy levels is limited

In any case, it is well confirmed that
patial confinement - energy quantization
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HOW TO REALIZE A POTENTIAL WELL

A potential well for an electron means the electron position is confined, e.g., at the surface of a
material

We have seen AE can fall within the range of our interest (eV, that is optics!)

We have also seen this usually require nm-sized a : at that point, a cluster of atoms is obtained,
rather than a nanosized object, where individual atom features dominate over confinement
- Need to find a “trick” in order to play with slightly larger objects, for instance by replacing m

Wlth m* (eﬁective mass in SemiconductorS) Confinement of Photon Confinement of Electron
- QUANTUM-
Moreover, dimensionality (i.e., o n
whether the material can be 2-DEG e WELL
described as a bulk, or its shape
and Size makes |t Similar to a plane’ Optical planar waveguide Quantum well
a segment, a point) starts playing a o
(similar to confinement of light in . ot wire

waveguides, but with a much
smaller size scale — guiding light 0-DEG DOT
with conventional waveguides ,/© &2

requires wavelength size scale!)

Microsphere optical cavity Quantum dot
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REMINDERS OF SEMICONDUCTORS (Si)

We will restrict to semiconductors, but the most technologically relevant elemental semiconductor, Si
(bulk), is not suited for optics, because of energy gap (in the IR) and, mostly, indirect transitions

Iy

fy

Band structure of Si

The top of valence band and the bottom of the
conduction band are displaced each other

Momentum conservation implies phonons to be
involved in the absorption process

Encrgy [eV]

Transition probability is small (10-°-10¢ s') (and
wavelength is in the IR, above 1 um)

L A B A X UK 2 5

Wavevector k (Bulk) Si is of bare interest for optics,
Yu and Cardona

optoelectronics, photonics
Fundamentals of Semicond.
Springer, Heidelberg (1996)
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SEMICONDUCTIVE ALLOYS AND SYSTEMS

Luckily, semiconductors can be artificially
produced in the form of alloys

Lattice constants of the elemental
components must be “matched” (a
maximum few percent of difference is
typically allowed!) in order to have stable,
pseuodomorphic growth

Band Gap [eV]

The simplest combination involves
elements belonging to IlI-V columns of the
periodic table, but other combinations are
possible (e.qg., IV-IV, II-VI)

The so-realized alloys can show a wide
range of band-gap energies, usually
zincblende or diamond structures, either
direct or indirect transitions

A wide choice of semiconductors is

available to tune the gap in a broad

range (from UV-blue to near-IR) and
achieve direct transitions

=

__[:}'QR

N

T

T~

]

(28]

AlP

| CdSe

51 52 55

Lattice Constant [A]

O mr-v

@ w-1v

The Royal Swedish Academy of Sciences has decided to award the

Isamu Akasaki, Hiroshi Amano
and Shuji Nakamura

“for the invention of effictent blue light-emitting diodes which has enabled bright and energy-saving white light sources”

6,0

O II-VI

Growth of semiconductor
alloys is a continued
relevant topic, see Nobel
Prize in Physics 2014
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EPITAXIAL GROWTH I

An additional and historically relevant possibility offered by semiconductor alloys is epitaxial
growth: e.g., layers (thin films) of one alloy can be grown over a layer made of another alloy

- Reproduction of crystalline structures requires negligible lattice mismatch
—> Fabrication methods capable of extreme purity are needed

Physical fabrication methods are preferred, such as Molecular Beam Epitaxy (MBE)

Effusion cells
RHEED
Shutters switch www.explainthatstuff.com
beams on or off

Screen

| - .
3 §
Heated N 2= Ga
Y Substrate 3o
ot > ) In
i ’Y,.”.’f 8
7 )

Si

Valve
Substrate to Buffer Chamber _

Transfer Rod i
lonisation

Substrate Gauge
heater

Beams

. fire at
Efgé?l'gn substrate

Be
N2
P4,P2

As4, As2

Layers of
atoms build up
on substrate

Sb4,5b2

Manipulator

» Growth of layers entails deposition of elemental (atomic) components vaporized in a ultra-
high vacuum (UHV, residual pressure < 10-° mbar, typ)

» Growth rate is intentionally kept very small (e.g., nm per minute) in order to accurately
control the layer thickness

» Substrate heating promotes formation of the expetced crystal structure in the layers
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EPITAXIAL GROWTH II

Other techniques (leading to a larger yield at the expenses of lattice and stoichiometric quality)
are, among others:

- Chemical Vapor Deposition (CVD), also in the Plasma-Enhanced version (PE-CVD)

- Liquid Phase Epitaxy (LPE)

Substrate

pressure sensor I
heat source
I ;lzzmmuzzzmznnzzzzyzzumgnznl Plasma Enhanced CVD System
inert Process
=] Gas Gas
—— —_— —_ gas out Preheater
substrate Il Shutter
——
Extraction unit
|| prRRRRRRRRRRRIRRRRaRe) RF Power Sl
heat source quartz tube
gas in Inner pipe
1 — m— X Insulating
o l}] E g?ﬂi Substrate holder

e | ——
precursors =
v 00 | 4'?
Qo 1 Vv 1

m “ By-Products

reagents in adsorption & film growth &
gas phase surface reaction release of
volatile byproducts

Crucible

~ Flux melt
Pedestal

Heating winding
Thermocouple

A few issues (they make MBE the technique of choice, unless special materials have to be deposited):
» Critical choice of precursor (typically, metal-organic molecules) in CVD
» Sometimes poor control of plasma-enhanced decomposition reactions
» Liquid phase often associated with the presence of impurities
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SEMICONDUCTIVE HETEROSTRUCTURES

Alternating layers of different crystalline semiconductors produces an heterostructure

Using semiconductors with different band gap energies leads to a (multiple) quantum well (MQW)

GaAs
AAS
GaAs
I nn
A
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Growth direction
HR-TEM image
(dots correspond to atoms)

AlL,Ga, ,As  GaAs
S

(a)

ik il Uy —
A =
3
&
&
E. ! =
o
2
2|  Ej(ALGa, As) E, (GaAs)
|
£ '.
v i1 Epm -
€ €hh2
e €hh3
(b)

4

Growth direction

Eycans ~ 1.4 €V

The lower band-gap layer acts
as a potential well for the
electron

Electron wavefunction confined

in the lower band-gap layer
Hole wavefunction confined in
the higher band-gap layer
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electrons
AN
——] P —
\V ™
| : | ; V
1 . :
AN < B8 < i
= 5 8 8 E
%5 holes g g = i K
>\/ L | K/n:1 2 3
%

¢ For energies E < ¥, the energy levels of the electron are quantized for the di-

recti . ment; hence they are given by the model of particle in
one-dimensional box, The electronic energies in“the other two dimensions
(x an iscrete and are given by the effective mass approximation

discussed in Chapter 2. Therefore, for £ < V, the energy of an-electron in the
conduction band is given as

PR R+ k)
8m*12 2m*

e

En,kx,ky = EC +

@.1)

where n = 1, 2, 3 are the quantaum numbers. The second term on the right-
hand side represents the quantized energy; the third term gives the kinetic en-
ergy of the electron in the x-y plane in which it is relativelv free to move. The
symbols used are as follows: m? is the effective mass of electron, and E. is
the energy corresponding to the bottom of the conduction band.

Equation (4.1) shows that for each quantum number n, the values of
wavevector components k, and %, form a two-dimensional band structure.
However, the wavevector £, along the confinement direction z takes on only
discrete values, &, = nr/l. Each of the bands for a specific value of » is called
Thus n becomes a sub-band index. Figure 4.2 shows a two-di-
mensional plot of these sub-bands.

For £> V, the energy levels of the electron are not quantized even along the z
direction. Figure 4.1 shows that for the AlGaAs/GaAs quantum well, the
quantized levels n = 1-3 exist, beyond which the electronic energy level is a
continuum. The total number of discrete levels is determined by the width / of

QUANTUM WELLS |

. —‘@. chave in analogous way, except their quantized energy is inverted

and the effective mass of a hole is different. Figure 4.1 also shows that for the
holes, two quantized states with quantum numbers » = 1 and 2 exist for this
particular quantum well (determined by the composition of AlGaAs and the
width of the well). In the case of the GaAs system, two types of holes exist,
determined by the curvature (second derivative) of the band structure. The
one with a smaller effective mass is called a light hole (1h), and the other with
a heavier effective mass is called a heavy hole (hh). Thusthe n=1and n =2
quantum states actually are each split in two, one corresponding to lh and the
other to hh.

Because of the finite value of the potential barrier (¥ # =), the wavefunc-
tions, as shown for levels n = 1, 2, and 3 in the case of electrons and levels #n =
1 and 2 in the case of holes, do not go to zero at the boundaries. They extend
into the region of the wider bandgap semiconductor, decaying exponentially
into this region. This electron leakage behavior has already been discussed in
Section 2.1.3 of Chapter 2.

The lowest-energy band-to-band optical transition (called -
sition) is no longer at E, the energy gap of the smaller bandgap semiconduc-
tor, GaAs in this case. It is at a higher energy corresponding to the difference
between the lowest energy state (n = 1) of the electrons in the conduction
band and the corresponding state of the holes in the valence band. The effec-
tive bandgap for a quantum well is defined as

EST=(E.— Ep)+

In addition, there is « elow the band-to-band transition.

These transitions are modificationsof the corresponding transitions found for
a bulk semiconducterIn-addition to the interband transitions, new transitions
between th¢ different sub-bands Ycorresponding to different n values) within
the conduction band-can-eccur. These new transitions, called intraband or in-
ter-sub-band transitions, find important technologic applications such as in
quantum cascade lasers. The optical transitions in quantum-confined struc-
tures are further discussed in the next section.

After P.N. Prasad,
Nanophotonics,
Wiley, Hoboken (2004)

(4.2)

nttp: //thewell and the barriee beight. V.
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QUANTUM WELLS |

Different kinds of MQW exist, where confinement is realized for electron and hole wavefunctions in the
same or in different layers

Most relevant configuration: electrons and holes
A B A B A . .
, ; / are confined in the same layer
l[ 5 Most favoured for exciton formation

|7 e.9.: A=GaAs (E,, ~ 1.4 eV, lattice 5.653 A)
Een Ega B=AlAs (E 5 ~ 2.2 eV, lattice 5.62 A)
— J e _ or B=Ga,_AlAs (x typ. < 0.3)
AF,
il
Table 4.1. Semiconductor Material Parameters
i typ. thickness <2 nm Periodic Bandgap Bandgap Exciton Exciton
AL Table Energy Wavelength  Bohr Radius Binding
D T sizrasgEll 000 li@eaaram Material Classification (eV) (pm) (nm) Energy (meV)
D ' — CuCl I-VII 3.395 0.36 0.7 190
' Cds 11-VI 2.583 0.48 2.8 29
E,\ CdSe 11-VI 1.89 0.67 4.9 16
: 1 GaN v 342 0.36 2.8
_____ gl |7 GaP -V 2.26 0.55 10-6.5 13-20
v InP -V 1.35 0.92 113 5.1
GaAs -V 1.42 0.87 12.5 5
AlAs -V 2.16 0.57 42 17
@ ¥ Si v 1.11 1.15 43 15
e E. AE: Ge v 0.66 1.88 25 3.6
(misaligned) b ¢ Si,_,Ge, v 1.15-0.874x  1.08-1.42x  0.85-0.54x  14.5-22x
A el kel P I +0.376x +3.3x2 +0.6x2 +20x2
Lga T PbS IV-VI 0.41 3 18 4.7
t AIN -V 6.026 0.2 1.96 80

Yu and Cardona = —
Fundamentals of Semicond.
Springer, Heidelberg (1996)
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EXCITONS |

As you know, excitons are quasi-bound states consisting of an electron and a hole in a

semiconductor (stemming from some pair generation mechanism):

o In the bulk the binding energy is typically very low (Wannier-Mott type, binding energy typ <
tens of meV)

o The confinement, especially in Type | quantum wells, enhance probability of superposition
between electron and hole wavefunctions = increased probability of exciton formation (and
apparent increase of the binding energy)

Exciton energy levels are similar

Exciton :
to hydrogen-like atoms
@ @ (electron-hole pair) yarog E _ Ry ‘L[
F ey | -
} | J n 2 *
./ .
= - (b) Band gap with Ry = 13.6 eV Rydberg constant, /? m,&
\a) . u=(1/m,*+ 1/m,,.,.)" reduced mass,
‘ ( b/\u Zero point vibrational m,* effective mass of the electron,
} ~ (©) energy of the excited ¢ relative dielectric constant
- electron
} |\_-/I

Depending on material parameters, a
new, potentially engineered, discrete
energy spectrum can occur

Ao

Note that, exciton formation can take place also in many
other systems including, e.g., organic crystals, conjugated
polymers, dielectric with localized defects, etc.

@ Zero point vibrational
energy of the hole

“Artificial atoms” are created!
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EXCITONS li

Since in zincblende structures there are typically
two bands crossing at the top of the valence

GaAs Buffer MQW Layer bands, excitons of two classes, named heavy and
| light hole excitons, can exist (remember that

E;, || £, ‘ effective masses of the quasi-particles in solid

/ state physics are given by the curvature of the

dispersion relation, and the mentioned bands have
M different curvatures)

Absorption of 7 nm In_ Ga__As quantum well

600000
GaAs
band gap

500000 , 1.49 eV
steps are typical

E, ] of 2D system
400000 -

x
Riflettivita

Fotoluminescenza

300000

] continuum
— 121 eV 2 el

100000 -
| O N OO S O 1

1,46 1,50 1,54 1,58 0

absorption (1/m)

proportional to
square root
of energy

x-polarized
z-polarized

I I 1 1 I 1 I 1 I I

L 1 L . L § L4 ¥ ’ b ¢ Ll ' 1
150 K 105 1.10 115 1.20 125 1.30 1.35 1.40 1.45 150 155 1.60 1.65
8x8 k.p energy (eV)  (c) www.nextnano.de

Numerical simulation of heavy and light hole
exciton absorption in InGaAs Q-wire @ 150K

Foto Energia (aV)

Heavy and light hole exciton absorption in
GaAs/GaAsAl MQW @ 4K
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OPTICAL PROPERTIES AND QUANTUM CONFINEMENT

Summarizing:
The optical properties of semiconductors (e.g., absorption at photon energy above the band-gap)

are modified because of the combined effects of:
1.

Interband and intraband transitions involving quasi-discrete levels arising from confinement

2. Transitions between exciton quasi-discrete levels

7 nm
08 - GaAs In,.Ga As GaAs
= cb
o —
] 1 —— Vb (hh 2,2 2
o7 8 electron states vb Elh)) E . ﬁ T 1 1 — h ’71’2
E in the well e1 confinement o . a - 2
0.6 —E— e2 2a. me mh 2#(1
S © — — —— hh1 1
o 054 GaAs % Transition energies for k"=0 —hh2 E o p L *
3 » bandgapg e1-hh1: 1.21ev  ——hh3 exciton = — o R"" N —Ry
S il 1.49 eV 'd—, el-h1: 1.32ev | ——Ih1 €x Me
2 ’ -t e2-hh2: 1.36eV
= band gap: 1.49 eV E = Ebandgap + Econﬁnoment + Ecxciton
-0.6 -
il 4 hole states . E h2 71'2 *
07 UL in the well - bandgap + 2 2 - R!I
T A in a @-dot
8x8 k.p distance (nm)  (c) www.nextnano.de

Quantum confinement in semiconductors is hugely exploited in devices, e.g.:
v" most diode lasers and LEDs use MQWs of various material alloys
v" many very-high frequency electronic devices use MQW (transport properties are peculiar, as well)

We will restrict hereafter to Q-dots absorption/emission properties

http://www.df.unipi.it/~fuso/dida
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DIMENSIONALITY AND DENSITY OF STATES

Density of states (DOS) represents the number of states available for a certain energy

Clearly, DOS enters in defining the transition probability (aka “oscilator strength”): the larger the
DOS, the stronger the transition

Quantum mechanics says that, in the so-called momentum space a unit of momentum occupies a h3
volume (in 3-D, otherwise h? and h in 2-D and 1-D, respectively) and the density of states g(p)dp is:
V

In 3-D, a certain momentum p (i.e., in between p and p+dp) of AT 2d dp = — AT 2d
a quantum particle defines a spherical shell having a volume pap g(p) P W pap
S

In 2-D, a certain momentum p (i.e., in between p and p+adp) of 27 nd dp = — 21 pod
a quantum particle defines a circular corona having a surface pap g(p) P 2 pap

In 1-D, a certain momentum p (i.e., in between p and p+dp) of dp g(p)dp S dp

a quantum particle defines a segment having a length h
) with V, S, L physical volume, surface, length
E= P allowed to the quantum particle
2m
Assuming a free quantum particle: P /_Zm /_E Mathematical expressions

of g(p)dp depends on
dimensionality

gy [ E
2 VE
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DOS IN 3-D, 2-D, 1-D, 0-D

BULK MATERIAL

A QUANTUM WELL
3-D: E) o< \/E QUANTUM WIRE _—
g( ) QUANTUM DOT ,/
2-D: g(FE) o< constant
1 5
1-D:  g(E)oc—— g
JE 5
0-D:  g(E) o< d-functions z
o
Obviously, the actual DOS must take into
account the presence of the band-gap (3-D
case) or the occurrence of discrete energy

: >
levels (due to quantum confinement) + 4 Energy, £

Epuik Ever Bz E got

While in the bulk DOS tends to zero at the minimum required energy for a transition (the band-

edge), for lower dimensionality DOS is not zero at the minimum required energy for a transition
(correpsonding to quasi-discrete levels) and ideally diverges for quantum-dots

Lowering the dimnesionality leads to an inherent
enhancement of the transition probability

In Q-dots, very “strong” transitions are allowed
corresponding to quasi-discrete levels
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QUANTUM DOTS |

Quantum dots find a number of applications taking advantage of the possibility to tailor their
energy levels (“artificial atoms™)

For our specific interests, we restrict hereafter to their role as chromophores, i.e., nanoparticles
showing specific and engineered absorption/emission properties

Photoluminescnece (i.e., fluorescence
emission) from commercial (Sigma-Aldrich)
of CdS,Se,_/ZnS (6 nm average diameter)
in the colloidal phase: illumination is
accomplished in the blue-UV region and
different colors reflect the different energy
levels involved in the transitions

Quantum dots are often prepared in the colloidal
suspension phase, i.e., non-precipitating
nanoparticles, ready, e.g., to be functionalized and
attached to organic or inorganic systems in order to e -
have a fluorescent marker, or label ~ '

5 @ﬂa}ﬁéé it ,1
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QUANTUM DOTS I

,l‘_ Periodic Table of the Elements - 8
H He Quantum Dot Size and Color
2
— Most frequent element Yo
Li | Be . . Ne Blue light % %
e | e combination of the e ue lig
1 Y2 ] . 18
Na | Mg semiconductor alloy Ar Quantum Dots | 2m 250m € | aom som -
Sediom Argen .
29 ) a3 | 3 4 5 6 7 8 9 10 L 3555 ) Size dependent
19 20 21 22 . 23 24 25 26 27 28 . 36 Color
KfCal/Sc Ti V Cr Mn Fe Co Ni Kr
Potassiom | Caldum | Scandlum  Tiankem  Vamadum  Chromlum  Manganese lon Cobalt Nickel Krypton
39.10 ) 40.08 449 47.88 50.94 51.99 5494 55.93 58.93 58.69 84.80
37 Y38 39 40 4 42 43 4 45 46 54
Rb|Sr| Y Zr Nb Mo Tc Ru Rh Pd Xe
Rubidium | Strontium Yitriom Zirconium Nioblum Molybdenum Technetium  Rethenlom  Rhodiom Paladum Xenon
8449 ) 8762 | 8391 9.2 9291 95,94 .91 101.07 10291 10642 131.29
55 156 57-71 72 73 74 75 76 77 78 86
Cs | Ba Hf Ta W Re Os Ir Rn
Cesum Barlum | Lanthanides Haflum  Tantaum  Temgsten  Rhenlem  Osmium Iridiorm Platinem Radon [0}
132,91 13733 | 17849 180.95 183.85 18621 190.23 19222 195.08 222.02 O
87 88 89102 104 105 106 107 108 109 110 118 %
Fr | Ra Rf Db Eﬂ.“ Bh Hs Mt Ds Uuo 3
Frandum Radlem Actinides  Rabefosdion  Dubnlum  Seal Bohrium Hassium
223.02 ) 22603 [261] 262 [266] [264] 269 [268) [269] k %J
57 58 59 60 61 62 63 64 65 66 67 68 69 70 7 E
La Ce Pr Nd Pm Sm Eu Gd Tb Dx Ho Er Tm Yb Lu
Lanthanum Cerlum  Prasssdymivm Neodymiom Promethlum  Samarkem  Eurcplem  Gadolinwum  Terblem um  Holmlum Erblum Thulom Yrterbum  Lutetium
13891 140.12 14091 144.24 144.91 15036 151.97 157.25 15893 162.50 164.93 167.26 16893 173.04 17497
89 90 91 92 93 94 95 9% 97 98 99 100 101 102 103
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Actinlom Thordum  Protactinkem  Uranium um  Plutonlem  Americm Curlum Berkelum  Calfforniem  Einsteinlom Formiom  Mesdeleviom  Nobellum  Lawrenchm
227.03 232.04 231.04 23303 237.05 24405  243.06 247.07 247.07 251.08 [254] 257.10 = 25810 259.10 262
et ) Tt 5 : : - 450 500 550 600 650
(:} [ I I Neametal I Halogen I Noble Gas ] Lanthanide Actinide - '*::: Wavelength (nm)

I - Tailoring of the optical properties is based on

UV <250 400 «—— visiblle —— > 700 2,500 > Infrared

A (nm) size (red-shifted as diameter a increases,
“—> | o rrr— obviously), but also on composition
«—> > 5> (elemental choice and stoichiometry),
D —— <€ —> > affecting band-gap energy
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CORE/SHELL

An important issue in applications of
Q-dots is their quantum yield, that is
the “efficiency” of their fluorescence
emission (i.e., the probability that an
incident excitation photon produces a
spontaneously emitted photon)

Despite the presence of quasi-
discrete levels and the related DOS

made of d-functions, non radiative N
processes are a concurrent path for —o— E
de-excitation P S N I -

Yo 1 T~ R

~ Tl : :
Dangling bonds at the Q-dot surface R E,(CdSe) I d } i EI :
are known to provide excitation Y I """" el =
effective non-radiative paths
Type | (C/C) Type Il (S/C) Type | (S/S)

Core-shell Q-dot structures have been implemented in order to prevent non-radiative de-excitation
at the surface owing to confinement of electron and hole wavefunctions in the (“isolated”) inner shell

Different types of core-shell Q-dots developed, similar to quantum wells, all leading to enhance the
quantum yield
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FABRICATION

From Wikipedia: Colloidal semiconductor nanocrystals are synthesized from solutions, much like traditional chemical processes. The
main difference is the product neither precipitates as a bulk solid nor remains dissolved.[3] Heating the solution at high temperature,
the precursors decompose forming monomers which then nucleate and generate nanocrystals. Temperature is a critical factor in
determining optimal conditions for the nanocrystal growth. It must be high enough to allow for rearrangement and annealing of atoms
during the synthesis process while being low enough to promote crystal growth. The concentration of monomers is another critical
factor that has to be stringently controlled during nanocrystal growth. The growth process of nanocrystals can occur in two different
regimes, "focusing" and "defocusing". At high monomer concentrations, the critical size (the size where nanocrystals neither grow nor
shrink) is relatively small, resulting in growth of nearly all particles. In this regime, smaller particles grow faster than large ones (since
larger crystals need more atoms to grow than small crystals) resulting in "focusing" of the size distribution to yield nearly
monodisperse particles. The size focusing is optimal when the monomer concentration is kept such that the average nanocrystal size
present is always slightly larger than the critical size. Over time, the monomer concentration diminishes, the critical size becomes
larger than the average size present, and the distribution "defocuses".

Many variants of liquid

phase (chemical) fabrication n | 0 5

process have been ., TOP-Se |- Dodecanthiol . Zn Oleate o\

developed capable of batch |, = ' = - = » : CdSe:

production of Q-dots with : = : oy s ‘ecas

small size dispersion =l ,[/ = ,/ =L ;ﬁ = Zns
RO SRV O VTN W

Note: other fabrication L oL N Wiy w. D

methods (mostly physical) LA ) (s

are in use for Q-dots grown e o0 . .
on solid substrates, not

considered here!
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SUMMARY OF PROPERTIES

Quantum Dot Spectral Profiles Broad coverage of visible-NIR spectrum available

100
Emission Quantum yield above 50% frequently reported (note

that the exciton binding energy for a small-sized Q-
dot can exceed hundreds of meV, being stable at

room temperature)

Acceptable resistance to photobleaching (but
blinking phenomena frequently occurs!)

8 & 8 8

Intensity (Percentage)

Ease of surface fucntionalization for applications as

00 400 500 600 700 - : : . ,
9 Wavelength (Nanometers) label/marker/tag in organic and inorganic imaging

W o

Zinc

Sulfide
. Capsule

% Polymer

Biological
Conjugate

Hydrophilic
Exte‘:lor

targeting molecule

: Cadmium
Selenide
Core

2-10 nm
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CONCLUSIONS

v" Quantum confinement effects are among the most striking phenomena ruling the different
behavior of nanoparticles compared to bulk counterparts

v" Roughly speaking,
(i) discrete energy level
(ii) exciton (“artificial atoms”)
(iif) DOS
contribute to realize systems whose optical properties can be effectively tailored by
engineering composition, size, dimensionality

v Very very many applications are found: here we focused onto Q-dots as fluorescent markers/
labels/tags: they can even exceed performance of conventional (organic) dyes and are thus
an extremely powerful method for spectroscopy/microscopy at the nanoscale

We will see in the next lecture how emission spectroscopy can be exploited for
pushing resolving power beyond the diffraction limit
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