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Outlook

What we are interested in:
- description of the behavior for a solid at the local (ultra-small!) scale

Restrictions (for the moment!):
- the solid is a crystal, i.e., single atoms (or molecules) are regularly arranged in space
- the sample is huge in all three directions (it’s a bulk crystal, for the moment!)

Assumption:

-Electron and “ions” (i.e., lattice sites)
can be considered separately, i.e.:

- the total Hamiltonian is sum of
Hamiltonians and

-wavefunctions are multiplied

Electron wavefunction = transport properties
Lattice wavefunction = termo(mechanical) properties
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Interaction force/potential

| hteratom iC fO rce/pote ntia I . As we shall see, it is often more useful to deal with the interaction potential

energy ¢(r) rather than the force f(r), which is defined through the relation

typical example Lennard-Jones dg .
flr) = a4 (1.1)
r
Note that this differential equation defines the potential encrgy only up to
‘ ‘ an additive constant, whose value is arbitrary and has no physical meaning.
The potential energy can also be described as the negative of the work done
r by the force for a displacement r — ry from the point of zero potential energy

ro being the equilibrium distance To, OF

o) =-w=- [ " f(r)dr, (1.2)

T . T v which is equivalent to (1.1).

As a specific example, we will consider the model known as the Lennard-
Jones interaction, which applies to atoms interacting through the van der
Waals interaction. The interaction potential energy for the Lennard-Jones
model has the algebraic form

A B
o(r) = % T (1.3)
with the parameter A determining the strength of the attractive interaction,
and B the repulsive interaction. The attractive 1/r% dependence is characteri-
stic of the van der Waals interaction, while the repulsive 1/7!? dependence is
somewhat phenomenological. The repulsive interaction is strongest for small
r, with the atoms close together, and decreases more rapidly with r than the
attractive interaction, which therefore dominates for large r. The zero for the
potential energy ¢(r) is chosen so that the energy is zero when the atoms are
infinitely far apart. The force corresponding to (1.3) is

$(r)
N

fr)=6=-12=. (1.4)
Firg A

Fig. 1.1. Lennard-Jones model interaction force ~f(r) and potential energy o(r), ] ]
as a function of distance r/ro. Note we have plotted the negative of the force, so Attractive / repulswe character

that a positive value corresponds to an attractive force. The vertical axis is for the . .
potential, in units of the potential at the minimum, ¢o = ~¢(ro). dependlng on distance
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Harmonic approximation (small displacements)

1.1.1 External Forces

We ean now imagine what happens if we try to pull our two atoms apart.
Let’s say that we apply equal and opposite external forces [ to each atom.
The atoms will move apart until they reach a new equilibriuim point (), where
Lheir attractive interaction balances the external force, — f(97)) = f..- If the
external foree is too large, above the maximum value of — f(r) in Ifig. 1.1,
there will be no eguilibrium point and the atoms will unbind.

Another way to understand e the potential energy asso-
cintod with the external fore@, ¢exe(r) = — fexim)Note that the zero for the
external potential is chosen at = 0. Note ther® is no factor of two in this
cxpression: Both atoms are acted upon by the external force, but each atom
i only displaced from 7 = 0 by /2, so the work done by the force, which is
the negative of the potential energy, is W = 2 x fo /2.

The total potential energy is then Uior = @(7) + @ext (). For fux = 0, the
Lotal potential energy is the same as the interaction potential. For small foxe,
the minimum for the total potential U, will shift to the new equilibrium
point #{; for fox too large, no minimum occurs. In Fig. 1.2, we show a
[amily of potential energy curves for different external forces, showing how
Lhe minimum energy point. moves away from 7y until it disappears at large
enonph [ (see Exercise 1.2).

Note that : er—eswe apply the external force, the energy minimum
al ) jw(-“”” aloms can achieve a lower tolal energy il they
CAN CIOSS Overss 0 T barrier and escape to infinity. This provides in-

leresting questions in the case where we allow the atoms to have non-zero
temperature, so that there is a certain probability that they can be thermally
activated over the potential barrier; the same question occurs when we cou-
sider quantum mechanical tunnelling, through the barrier, also allowing the

aloms Lo escape.

In addition to the question of binding, it is of 1wow how a
solid, or in our case, the two atoms, respond to such that
Lthe atoms only displace a very small amount from their equilibrium positions,
[rom ry Lo 7). We can use our model Lennard-Jones interaction to see how
this works. For a very weak [orce fo, the very small shift in the equilibrium
point allows us to approximate the interaction potential by using a Taylor

seres expansion of the potential:

At the first order, potential is
parabolic, force is linear
(and restoring), i.e., harmonic
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Fig. 1.2. Total potential energy Uio. for the Lennard-Jones potential in the pre
sence of a constant external foree; the family of eurves is for external forees ranging
from zero (top) to a force larger than the maximum Lennard-Jones binding force
(bottom). The arrows indicate the new equilibrium point rj for each value of the
external force. Vertical axis is in units of the interaction potential at the minimum
point.
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where in the second, approximate ecquality, we have used the fact that
dep/dr(rg) = 0, and we have dropped the higher order terms in the Tay-
lor expansion. We are thus left with a harmonic potential approximation for
the interaction, that depends quadratically on the square of the displacement
u = r —7g from equilibrium.

I'or the Lennard-Jones potential, the curvature is given in terms of the
couiliby sg and binding energy by

(1.6)

In Fig =3 the harmonic approximation to the Lennard-Jones po-
tentialy the approximation is seen to work well for very small displacements
from equilibrium, but rapidly fails as one moves further away.

I the presence of a weak external foree, the equilibrinm point shifts to
where dUy fde = 0; using the expansion (1.5) for the interaction potential,
Lhis s when
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Relative motion of the dimer

We now consider the dynamical behavior of the atoms in our model inter-
action potential. What this means is that we will allow the atoms to move,
so that they have a kinetic energy T in addition to the potential energy
U = $(r).

We assume that the center of mass of our system remains at rest. With the
atoms at distances 7y and 9 from the origin, their separation is r = 2 — ry.
11 the atoms have masses My and My, the location of the center of mass v,
15 the weighted smn of their locations, or

ey R LN Center of mass (1.9)
M+ M. -
I'he atom positions can be written in terms of r.,, and r as
Moy
1 = Tom — m L )
M, (1.10)
Tg = Tem + h};ﬂf_g i

If the center of mass is at rest, so 7o, = 0 (where we use the notation
# = dr/dt), then the atom velocities must satisly
M7y = —y 7. Conservation of the impulse (1.11)

I'be kinelic energy can then be written
. 1 g 1
T = Eﬂai’ﬂ‘l +§
1 .,
: ui?, (1.12)
using the reduced mass 1/p = 1/My + 1/M3. With the momentum p = pr,
the kinetic energy is

M7}

%. (1.13)
The Hamiltonian for the system, H =T + U, is Lthen
H= -1--;@2 + ¢(r), (1.14)
2p
and Hamilton’s equations of motion (sce ¢.g. Goldstein [2]) then yield
Ui = _ﬁ(r; = f(r). Interaction force (1.15)

Let’s again consider onlv very small displacements u = r — rp from the
cquilibrium spacing ry. Using the Taylor expansion (1.5) for the interaction
potential, the equation of motion for w(t) is easily shown to be

&

53| (1.16)
o

Bk = —

I'his is the equation of motion of a simple harmonic escillator, and has the
usnal harmonic solution of the form

u(t) = up cos(wot + @), (1.17)
where the resonance frequency wq is given by

L d*¢ - o

t I ame Oscillation frequency (1.18)

and the amplitude wg and phase @ are determined by the initial conditions.
A convenient. shorthand for writing harmonic solutions of the form (1.17) is

Lo use complex exponential notation, of the form

ul(t) = uge ot (1.19)

where the amplitude ug can be complex, to allow for the phase factor p, and
the actual solution is obtained by taking the real part of (1.19).

We see that the natural resonance frequency wy of our system is determi-
ned by the reduced mass g and by the curvature of the interaction potential
A2 /dr?, just as the displacement due to a static external force, (1.8), is in-
versely proportional to the same curvature. This close relation is due to our
use of the harmonic approximation for the potential; another way to repre-
sent the interaction in this approximation is to think of the atoms as being
linked by a simple linear spring, with spring constant k given by

d?¢

= = -
dr -

(1.20)

The equilibrium length of the spring is ry, and the potential encrgy for se-
paration r is thus U = k(r — r9)?/2 = ku?/2, the same as for the harmonic
approximation, with the trivial change that our zero of energy is now at the
cquilibrium point 7o rather than at infinite separation. Both the response to
weak external forces, and the natural dynamic resonant response (1.15), are
captured by this simple model, shown schematically in Fig. 1.4.
Ior the Lennard—-Jones potential, and two argon atoms, with masses M) -

My = 200 = 6.6 10723 g we have already calculated a spring constant & = 52
meV /A% = 0.83 N /m; we now find a natural resonance [requency wy /2w = 0.8
I'Hz. This is somewhat low for a mechanical atomic resonance frequency;
the shallow van der Waals interaction has a gentle curvature, reducing the
lrequency from that for covalently or ionically bonded atoms, which typically
wce frequencies of order 10 THz = 10'3 Hz. The spring constants

have res

Tor such bonds are correspondingly larger, with & in the range of 10-100 N/m.

M, M,
o Q
- Iy .

Fig. 1.4. Spring madel for the interaction potential between two atoms.

Neglecting center of mass dynamics, the
internuclear distance oscillates at some
frequency (upon externally applied small
perturbations) determined by the
potential curvature
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Trimers

1.2 The Three Atom Chain

We now add o third atom to our systen, and for simplicity assume all the
aloms are ddentical, with mass M. We arrange the atoms in a line, and

apain restrict motion” Lo one dimension, along the line of atoms. We further

assume that the force which holds the three atoms together is a two-particle
interaction, depending only on the positions r; and ry of, say, atoms 1 and
2. Hence we write the interaction potential energy as ¢(r., r2). Furthermore,
we assume the potential is a function only of the distance between the atoms,
so that @(ry,72) — ¢(r2 — r1). For three identical atoms, the total potential
energy U in the absence of any external forces is then given by

Ulri,ro,ma) = ¢lra —m) + ¢lra — r2) + @l 13). (L.21)

We will further assume that the potential interaction is very short-range,
s0 that we only need include the interactions between atoms adjacent to one
another; for a chain with the atoms in the sequence (1,2, 3), as shown in Fig.
1.5, this means we can drop the third term in (1.21).

M k |‘_ Fy *l
© QO \Q
| 2 3

Fig. 1.5. Spring model for the three atom chain.

Our final simplification will be to replace each potential interaction by its
harmonic approximation, so that for atoms 2 and 3,

1 d%¢
s —5| (r—r)?, (1.22)
2 dr? |,

Br =15 = 13) =
choosing the zero of energy at the equilibrium separation rs — rg = rp.

As discussed above, the response of the two-atom potential to both weak
external forces and for small dynamic motion is entirely equivalent to that
when the atoms are connected by a linear spring with spring constant k,
whose value is given by the curvature of é(r). We therefore find that our
simplified, one-dimensional three atom system now consists of three masses
M connected by linear springs k, as shown in Fig. 1.5.

1.2.1 External Force on a Trimer

We first consider what happens when we pull on cither end of the chain with
ciual and opposite external forces fex, as shown in Fig. 1.6. By symmetry,
atom 2, in the middle of the chain, does not move. The two end atoms 1 and
twill be displaced until the restoring force provided by their interaction with
alom 2 matches that of the external force. The displacement uy of atom 1
[rom iks rest point is therefore identical to that obtained when pulling on the

fwor abom chain,

l—< oty + Pyt »{

fon €@FIN-Q-WQ > fo

oo 7 o

Fig. 1.6. Three atom chain stretched by an external force fox.

Uy = rg—=r1 =79 = fext/k

1
—_— 1.23
dzc,f);'drz fexm ( )

with an identical expression for uy = ry —r2 — 7.

1.2.2 Strain in the Trimer

We arc now in a position to define the strain, a very useful quantity when
describing distortions of solid objects. The strain, which we will write as e
(we will be careful to distinguish this from the electron charge), is defined as
the fractional displacement of a point in the solid from its rest point. For our
three-atom chain, the strain e between atoms 1 and 2 is then

mo_ et Definition of strain (1.24)
0 k'ro

I'he strain belween atoms 3 and 2 is the same, e = uy/ry = fext/k7ro. The
sirain is a dimensionless quantity, and for a uniform external force applied
to a uniform object, will be constant through the object.

1.2.3 Dynamic Motion

We now briefly explore the dynamic behavior of our three atom chain; we
will assume, as we did with the two-atom system, that the center of mass of
(11 aystem is at rest. The dynamic motion can be described by the relative
diplicements uy, ue and ug of the atoms from their rest points; the center
ol mass condition is then, for equal mass atoms,

1y +itg + i3 = 0. (1.25)

'l momentum associated with each atom is p, = M1,,.
I he kinetic encrgy of the three atoms, and their (nearest-neighbor) spring
iternetions, yield the Hamiltonian

. Lo 2, oy K 2 K V2 (196
=T+ U= M (pi +p3 +p3) + :.E(u'l —ug)” + 5(:12 —ug)®. (1.26)

'l corresponding equations of motion are

Neglecting center of mass dynamics, a three
particle system requires two coordinates
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H H . (1.31). We find that the amplitudes must satisly A, lq andd Ay = 0. The
OS CI I I atl O n S Of th e trl m er overall amplitude of the eigenvector is arbitrary, the cigenvector equation
(1.31) only tells us the relative amplitudes of motion for the three atoms.
It is convenient. to make the length of the eigenvector (A, Ay, As) equal to
unity, that is, to nermalize the solution, so we find the solution pair

Ay 1/V2

) w=wp & | As o |. First normal mode(1.13)
Mu, = "i[ﬂg—’ul). A;; _1};\/’2’
Miiy = k{uy — 2uy +uz), Equations of motion;; 27)
B The second non-zero frequency is z = 3 or w — iy, we lind the cor-
Mig = FE(uz — ug). responding eigenvector must satisfy A, = —24, 24, so the normalized
To solve these coupled equations, we look for the normal modes of the solution is
system, the solutions where all the degrees of freedom (uy, us and uz) have the Ay —1/4/6
same, harmonic, time dependence. Using the convenient exponential notation, w= Vi — | 4, | = 2/\V6 | . Second normal queq)
this means we look for solutions of the form Ay —~1/v6
tpy = ApeTE, (n=1to03) (1.28) The final frequency is w = 0. Inserting this solution in (1.31), we find
where the common [requency w and the (complex) amplitudes A4, are still to the cprrespon(ling eigenvector (A1, Az, As) = (1/V/3,1/V/3,1/V/3). This last
be determined. Inserting these solutions in (1.27), we find the linear system solution, with equal values for all the displacement amplitudes A, is actually
of equations ' ' somewhat special: The zero frequency solution corresponds to an overall mo-

tion of the center of mass, where the actual time dependence is not an ex-
~MuPA; = k(A; - Ay), ponential e=* but instead has the form u, = at + b, corresponding to the
—MuwtAs = k(A; — 245 + As), (1.29) nniform translation of the chain at constant velocity. This can be seen by
“MuPAy = k(A — Ag) Fnserting this solution into the original system of equations (1.27); however,
: ! it violates our condition on the center of mass, (1.25), unless the velocity a is
where we have cancelled out the common time dependence. Defining the zero. We therefore ignore this now trivial solution; we have, after all, found
frequency wg = (k/M)*2, the system of equations (1.28) can be written as
an ewgenvalue-eigenvector equalion,

Search for oscillations

2 [ Ay 1 -1 0 Ay o =ay w=3"w,
&) |4 =[-1 2-1| |4 | - Systemofiingar eqs , " ™ Normal modes as a
('-u'o) Az 0 -1 1 Az b\—fw,,-O-fw,_p qu;hmq

I'he eigenvalues are the three values of w/wy that yield non-trivial solutions
Lo this equation, and the eigenvectors the set of amplitudes (A1, As, A3) that
correspond o each eigenvalue; we refer the reader unfamiliar with this ap-

- é{ basis set
A - 5
¢ P‘ Q ' # (eigenfunctions) for
proach to a text on linear algebra, or a book on mathematical physics, such W Vf\rfwo describing the
as that of Arfken [3] or Morse and Feshbach [4]. \ \ . .
With z — (w/wg)?, we subtract the term on the left from both sides, O‘W‘roM"V¢ bﬂw OSC|"at0ry dynamlcs
\4 / \ ] ,

leaving the equation

time

=z =i 0 A Fig. 1.7. The two normal modes for the three atom chain. The time axis runs
B | A | =0 (1.31) vertically; note that if the time axis were proportional, the oscillations for the
higher frequency mode on the right would be three times faster than for thae on the

0 1 1 Z A3 S P . . 5
left. The relative amplitades and phase oF motion for the three atoms aree however

I'lis has a non-trivial solution only if the determinant of the matrix is zero: carrect

L—2 =l 0 two independent solutions to a system with two independent degrees of free-

det Io2-2 -1 | =—2+42" — 32 =0. (1.32) dom, the third degree of freedom having been removed by our condition on
0 =l L= the center of mass motion. . _
U'his is known as the characteristic equation. The solutions to this cubic We note that if we had used the center of mass equalion to P'nlml.‘llatﬂ
oquation are the set z — (wfwa)® — 0, 1 and 3. one degree of freedom, say ug. in lerms of the other two, and then written
et us deal first, with the non-zero solutions. 11 we take the solution z (he corresponding Ilamiltonian and two equations of motion, we would have
I w o wy, the corresponding, cigenvector (A, Ay, As) s obtained from obtained the same two (nontrivial) eigenfrequencies and eigenvectors found
nhove,

In Fig. 1.7 we illustrate the two normal modes, (1.33) and (1.34).
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Linear atom chain (1D)

1.3 An N-mer Molecule: The N Atom Linear Chain Hamiltons cquations of motion are given by
: Miy = k(ug — ),

We now turn to an l\f—atom Qne—dim.e-nsi.om\l cl!afn,.u}r}_lere the a'?éms arce Mii, — k%u:“ —])Qun N .

connected by linear springs k with equilibrium spacing 7o; the atoms all have Miy = kluy_y —up) ’ (1.38)

mass M (see Fig. 1.8). The nth atom will have relative displmﬁemeﬂt‘un I?rom . .

its equilibrium point, so the potential energy in the spring <:'onner:tmg it to We notice from (1.38) that the atoms n — 1 and n = N need special

its (n + 1)th neighbor is ¢ = k{un — Un 41 )2 /2. Motion is restricted, as before, treatment, as they only have onc neighboring atom. This presents an Ao

ing aspect of the problem, and dealing with it subtracts somewhal from the
mnssage we are trying Lo convey. We therefore take this problem and trans-
form it somewhat: We connect the atom 7 =1 to the atom n = N by a

o along the line of atoms.

= koo Linear atom chain ng‘inﬁ kf 50 that eflcctively the chain of atoms is now a ring, shown in Fig.
\— -2. Performing this sleight of hand is known as applying periodic boundary

n-1 n n+l conditions.
Iig. 1.8. Model for the N atom chain, with masses M connected by springs k.
I%quilibrium spacing is 7o. vowoiw-rcmo\w

‘d"‘ g z @51 W) ;'\-'%4;‘
If we apply a force fex to the ends of the chain, we find the usual result ,p*‘ ., Periodic boundary conditions
Uhat each atom displaces by an amount 6 (Born-Von Karman) assumed to
tn = fexe/k. (1.35) b simplify the mathematics
I'he strain is therefore again uniform, with value € = fext/krg. . 'y
We now look at the dynamic behavior of the chain, and try Lo _|III(1 “1‘l|r‘~ %
normal mode solutions. The potential energy U of the whole chain of N VQWW
atoms, summing over atoms n, is give Fig: 1:9. o . ‘
= First neighbour harmonic ig. 1.9. Ring of N atoms, with atom 1 connected to atom N.
f = v = n‘|2~ H 1
U=3 2, Muni—u) interaction assumed .
n=1 ! ‘ o Our new equations of motion, with this maodification, are
andd the total kinetic energy ', in terms of the momenta gy, BT "”'I'-_” = K{ug — 2u; 4 un),
s . -'”‘-,:J.,; = k(h‘ru_i.] - 2u, + u,,_lj (n =2t N — 1}‘ (1,39)
; 1 i _‘J {l.:i‘f'l .J'IJ"T.'.N }’..'(uN q = ?'“N L u]}_
;I“ .

I'he cigenmodes of the chain are those where all the atoms move at the
samme Irequency, ‘

Uy, -fjﬁ;(r_i‘“’

N ; (1.40)
where A, is the amplitude associated with the nth atom, and has units of
length; the factor 1/v/V will prove convenient later.

. Inserting this in the system of equations (1.38), we find the nig«uvm-hn--‘
cigenvalue equation
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Symmetry in the chain

Assuming first neighbour interaction and Born-von Karman, we define a periodic potential ,
with a periodicity given by the average (equilibrium) interatomic spacing (called R here)

In the (simple) 1D linear chain, the Bravais lattice is produced out of the R vector
representing the interactomi average (equlibrium) distance: we’ll see later the extension to
more realistic situations

0.2 |Teorema di Bloch

Gli autostati v di un hamiltoniano monoelettronico 0, piu in generale, di un sistema con data periodicita

2
Hy = [—% v —fflil‘}] U=
dove
[Ir+R)=10I(r)
per tutti gli R nel reticolo di Bravais possono essere descritti da un’onda piana (che rap-
presenta la soluzione in assenza di potenziale ) moltiplicata per una funzione con la stessa
periodicitd del reticolo di Bravais: Plane wave

, Vo ik 3
Unk(r) = €™ i (r) |
con U (r + R) = tnk(r) per tufil g1 I del Teticnlo (1 Dravals.

La combinazione delle due equazioni precedenti porta come conseguenza che

Envelope function (periodic)

ke !

Unk(r + R) = €™ Ui (r)

la presenza dell'indice n indica che per ogni valore di k esiste un numero grande di soluzioni.

http://edu.sm.chim.unifi.it/gc/CFST-PDF/bloch1.pdf
Scuola Dottorato da Vinci — 2009/10 Proprieta piccola e piccolissima scala http://www.df.unipi.it/~fuso/dida — v. 1 - part 3 —pag. 9



Dem O n St ratl O n Of 5 ecorsiderdiamo ki norma dedle fomzdord ¢ @ T

the BlOCh theorem _IlrL'jr-FL;.i:' - -IIrE:FI'.: oiridr| = |R)® _Ilrl.'j:r:.b'

podeted be dme foredond Wy (ra L) @ 9] differissomo solo per ] cambdo d origine & dove
avare che ke doe norme sono ngnall @ quind b norma 3 o{R) & 1. (mesio soggerisse

Defindamo mm opeatone 4 maslaviome T g, per ogni vertore del retionds i Bravais, che agis

cha
Fu ma fuzione ) maslandone largomeno & B elH mg T R
Ty fr) = fr=H] dve 2 deve emsare sod to in modo oppornno
Eramirdamo le proprietd ddl'opeatone tras laviome G eorsideriamo un versore dal retieols  Bravals &, posslamo serivens
L Ty emmuma eom [Tamiboniane: Tph =%Ty A T ]
To(M v} = Hr e R vr=H In gemare mn vertore dial retieoks i Bravai pod eseere seritio
poichis Ihamilordano & perdodica R o gy ol gy ey
= Hr) wre R =N Ty px cul
ofR) o8} o[8a)™ o(dg)™
2 Ty & additthe =k
k] -3 A gy Ay -2 el
TaTy ¢(r = Tp efr+R)=gr+R «R) (1) o) = ¢ ' Y-
= T w1} () drm
k — xi = 4 xgi
- TR. YT & FI'.: :.'L: -'l||;1 :.FI;E -'Ih1h
- T Ty wir) 14 @16y mmo i vattord d hase da retienln reciproen. Pertamto abbdamo
& uinl Tr(r) = e(r+ R) =R =™y
TII.TH. - TH. Tﬂ. -TH.-\H. OV D

4 T commmna con Ihamilondans pe qualkiagd vatore d Bravak, quind g amosad
el hamiltomdann possomo essere sealt] in modo tale da essore eooiempomaneamane

mricetail di toiid § Ty .
Bloch theorem provides a
Ky - ] =) . .
- : :.;L.I_, . straigthforward way to point out
H - LR =
the consequences of periodicity,
d Tromrama 2 T I " . . o .
I Ty which is one of the most striking
TuTav = clfiTay= Rl 111 me e | @spect of solid state (especially,
TrTh ¢ = Tr.pi=H <R [&) Zirich, Switzarand .
i crystal lattices)
[ l\'.|'.I:|'.'|d:| \:::t‘itmns ::'::;:d University
EFLEF[ -E':Fr- ™ FE Alma mater  ETH Zirich and University of
Lroesto moggersce ohe & ga seritio in forma esponenals Doctors ;,HH”
Netable Hobel Prize for Physics (1852)
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Linear chain |l

Ay 2 -1 0O 0 ... Ay
s | Az -1 2 -1 0.. Ay
i .43 — 0 "-]. 2 _1 A:; ) (1'41}
o

A 0o 0-1 2... Ay

Using the assumption of normal modes has transformed the coupled diffe-
rential system of equations (1.38) into an N-dimensional linear system (1.41).
This is a rather horrendous system to solve. We can however use the fact
that the chain of atoms is extremely regular, with each atom equivalent to
its neighbors (this holds for the atoms 1 and N as well, due to our joining
them together). This translational symmetry allows us to apply a version of a
theorem known as Bloch’s theorem, about which we will say more later. This
theorem says that we can look for normal modes that have the formn

Bloch’s wave (+ oscillation) (1.42)

where A is the overall amplitude (with dimensions of distance} and r,, the
cquilibrium position of the nth atom, r,, = nry. The spatial dependence of the
mode, that is, the dependence on the index n, is sinusoidal, with wavevector
i, or wavelength A = 2w /q. This is equivalent to saying that the amplitudes
A, i the normal modes (1.40) depend on the index n through A, = A4e'?"»,
As we shall see, the equations of motion will force a relationship between Lhe
frequency w and the wavevector g, although the amplitude A is arbitrary, as
it is for the three-atom chain.

Inserting the form (1.42) into the equations of motion (1.39), we find a
sel of three equations,

= Wg (eaqro 1 el{N=1)gro _ 2) )
—w? = w}(2cosqrg - 2) (1.43)
W = wé (e—ilﬂ"n +e i(N—1)gro _ 2) .

I'his set of three equations for the two unknowns « and g appears to over-
determine the problem. However, the third equation is simply the complex
conjugate of the first, and as the frequency w is real (not complex), it merely
cmphasizes that the right side of these equations must also be real. Hence we

lind that g must be given by L.
Quantization of the wavevector

q,,=m (27/ry)/N
lor integer values m; we will write these discrete values as q,,. With this
condition, the first and third equations are the same as the middle equation,

which pives elation between w,, and q,,:

2CO8 (o

Scuola Dottorato da Vinci—2009/10
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Wavevector and oscillation frequency
are related through the dispersion law

w= [LIIJ 3’0 q
(=] .
8 Acoustic modes
31
0
-m'yﬂ 0 mr,.u

q

Fig. 1.10. The eigenfrequency solution w(q) of the simple linear chain. The dotted
line shows the linear solution at small wavevector q Note that the values of ¢ are
actually diserete, but for a large number N of atoms, the spacing is very fine, and
the discreteness can be ignored. : '

In Fig. 1.10 we display this solution, along with the linear approximation
that applies for small values of the wavevector 4. We have only plotted the
solution for —7/ry < g < 7/rg, and we have ignored the discreteness in the
values of g specified bv (1.44)

Normal modes of oscillation follow specific
rules and acquire a collective character

Periodicity in space implies periodicity in g
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Linear chain Il

The values of q are discrete, given by the set g, because they relate
to the motion of a finite number of atoms: there cannot be more than N
values of ¢. The spacing of the values of q is set by (1.44), but this equation
does not limit the range of g. However, if we examine the Bloch form (1.42)
we see that values of ¢ larger than #/ry, and smaller than —7/rp, do not,

ru|=rc._s'(-:nt physically different displacements. If we take q larger than = /rg,
the displacements wu, are the same as if we take g =q— 27 /ro:
T = A eiano P
n — o -
VN Eigenfunctions
- - eiq’n.m+i21.-n e—iwt
vN
A . ;
= — pl7n0 —lwt -y
TN e W, (1.46)

A similar argument applies if ¢ < —1 /ry, where we would take q = q+2x/rg.
It-is thercfore not physically meaningful to take q outside the range —?’l'/;g <
¢ < w/ry. From the relation (1.44), we therefore see that the index s can
range from —N/2 to N/2, vielding N distinct values for q, as desired.
The solulions (1.42) are written using complex notation; the actual dis-
{ull.'nl'lz;;m-nr.u are of course real, and are obtained by taking the real part of
The most general form for (he displacement Tor the nth atom, in olher

words for motion that is not restricted Lo o sinele normal vl Ge Laili

by superposing all the normal modes with arbitrary amplitude and relative
} <
phase, .
o General solution
1 < . -
U= = > iAm|cos(gmrn — wml + om)- for the collegtive
VN Wiy displacement
There is a physical difference between positive and negative values of g (or
). For g > 0, the solution (1.47) is a travelling wave moving towards larger
1, counterclockwise in Fig. 1.9; the phase of the cosine remains constant if,
as time t increases, n increases as well. For ¢ < 0, the wave travels towards
smaller n, or clockwise, in the periodic chain. OQur solutions therefore include
waves travelling in both directions around the periodic chain. This result is
1ot obtained for the original problem, with the end atoms not conuected to
one another: In that case, one finds standing waves, as we discuss in Sect.
1.3.3.

Scuola Dottorato da Vinci— 2009/10

1.3.1 Normal Mode Coordinates

In the previous section, we determined the relation between the normal mode
[requencies and wavevectors. In that section, the relative displacements u,,
of each atom provided the coordinates in which the system’s motion was
described. Another way to look at this system is to trcat the amplitnde of
cach normal mode as a coordinate of the system, leaving the amplitudes as
time-dependent variables. The idea is to write (1.42) in the form

1 N2
) = 75 D Un(t)er
\/‘J\‘ m=—N/2
Nj2
= = Y Uy, (1.48)
\/N m==N/2

where the amplitudes U,, are time-dependent. We can invert (1.48) to find an
sxpression for the mode amplitudes U, in terms of the atom displacements
Uy,
N
Up(t) — -u..“(f}u"2""”""”’\'|. (1.49)
vN =
I'he proof that this relation is equivalent to (1.48) is left, to the exercises (see
Iixercise 1L11).
The momentum associated with each atom is p, = M1,; we can deline
o momentum P, associated with the normal mode amplitudes U, using the

ditinition of the ecanonteal momentum,

ac o ar Crystal momentum (1.50)
ard o

]
m

Normal modes of oscillations in the lattice can
be regarded as collective excitation of the
crystal, with proper energy, momentum, etc.

They move at a phase velocity experimentally
corresponding to the speed of sound in the solid

Proprieta piccola e piccolissima scala
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Further variants |

1.3.3 Fixed Boundary Conditions

We have treated the problem of the N atom chain using periodic boundary
conditions. It is perhaps more appealing to see how this problem s treated
using more “realistic” boundary conditions; we will therefore briefly treat the

problem of fixed boundary conditions, where we connect atoms | and N by
springs to fixed, rigid supports, shown in Fig. 1.13.

Fixed
boundary
—ANAoas conditions

n=1 2 N

Fig. 1.13. Fixed boundary conditions for a chain with N atoms.

The equations of motion for this system are
Miy, = k(ug — 2u),
Mii, = k(upi1 —2un+tp1) (n=2to N —1), (1.62)
Min = k(uy—1—2upn).

The solutions to this system of equations are not travelling waves but
standing waves, made up of equal amplitudes of the right- and left-going
waves found for periodic boundary conditions. These have the form

A . it i
ty, = —= sinqrone™"’, (1.63)
VN
Inseriing this in (1.62), we find after some trigonometric manipulations the
pair of equations

w? dw? sin® qro /2, (1.64)
tan Ngry Langry . o

27

mm (1<m<N)

q:

Scuola Dottorato da Vinci—2009/10

Assuming fixed boundary conditions:

- Quantization is still recovered, i.e., the
guantum character does not depend
on artificial boundary conditions;

- Standing waves are found instead of
travelling waves (reflection at the
borders...)

- The obtained dispersion relation is
slightly different

Proprieta piccola e piccolissima scala
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Further variants Il

1.4 Linear Chain with Optical Modes

The last one-dimensional problem we will discuss is what happens if we add
a second set of atoms of mass M’ to the one dimensional chain, alternating
Lhese with the original atoms of mass A as we shall see, this generates a new
el on branch, ol frequencies, which are known as optical modes 1o distinguish

them rom the aconsite modes discassed so far,

The masses are linked by identical linear springs k, and the masses have
equilibrium spacing rg, as sketched in Fig. 1.18. We number the masses in
pairs, so that the nth atom with mass M has displacement u,, while nth
atom with mass M’ has displacement v,,. The equations of motion can be
shown to be

FVI}”R = }‘7(7"n+1 — 2un ‘!"Un—l)x } (1.74)
M, = E(upiy ~ 2Un + 1un_1)-
We will take periodic boundary conditions, so the n = 1 atom of mass M is
coupled to the n = N atom of mass M’; this is not reflected in (1.74), but
we will enforce this at the end of the calculation, when we determine the set
of allowed values of the wavevector.

k
M M’(F‘F’u"f

——

n n+l

Fig. 1.18. Model for a linear chain with alternating atoms of mass M and M'.
The index » counts pairs of atoms.

The displacements are written in Bloch form,

A . ;
walt) = plgn2ro -iwt
v {t) _ B eiqrﬂrnv—iwt

n = H

VN
where the amplitudes A and B can be complex. We define two frequencies
wy and w,
= kM
AR T (1.76)
wh = VE/M,
and nsing these and the forms (1.75), the equations of motion become
w?A = 2wiA — 2w} cos(2qrg) B
. 0 0 ( qro) (1.77)
w*B = —2uwf cos(2qry) A + 2wi2B.

This is a 2 x 2 eigenvalue-eigenvector equation, where the values of w are
Ihe cigenvalues and the amplitude pairs (A, B) the eigenvectors. Written in
mntrix form, the equation is

0,42 2 ;
2wy — w 2

i cos(2qry) } [ A ] Q. (1.78)

"l [+ 3 . 2
2w cos(2qry) Qi —w? B

Scuola Dottorato da Vinci—2009/10

More than one species is present in the chain

Proprieta piccola e piccolissima scala

The characteristic equation, obtained by setting the determinant of the
matrix of coefficients to zcro, is given by

wh = 2(wl + wi)w? + dwdwf? sin® 291y = 0. (1.79)
The two eigenfrequencies for each value of wavevector ¢ are thus given by

Wi(‘?) = w§ eE u)f)z = 4 'V‘ (.u'a +u’64 + 2wiwh’ cosdgr. (1.80)
There aw+ and w_, for each value of the waveveetor g.

These two solutions are shown in Fig. 1.19, as a function of ¢, for a frequency
ratio wj/wo = 1.3 (corresponding to a mass ratio M /M’ — 1.3% = 1.69). The
lower set of solutions, w_(g), looks very similar to that for the single mass
chain, but the upper set, wy(g), is rather different. For small wavevectors
q, w_(q) increases linearly with g, while w (g) is constant, and then falls
gradually. The two frequencies approach one another at the limits of the
plot, as ¢ — Lm/4rg. There is a band of frequencies between the maximum
value of w_ and the minimum of wy for which there are no solutions; this
aap in the frequency spectrum is characteristic of this type of problem, and
is known as a bandgap.

The range of ¢ in Fig. 1.19 is —w/4rq < ¢ < @/4ry. We have not yet
determined the spacing of the values of ¢; this is set by the periodie boundary
conditions, where we have u; connected to vn. The equations for these two

atoms are

Wiy = W (v — 2uy + uw) (181)
w?uy = Wiy — 2uy +un).
Substituting the forms (1.75) in this pair of equations ultimately yields the
he | 75) in this pair of equati 1ti ly yields tl
e Ll
g o Quantization condition  (1.82)
"N -y

for integer values mi. There are thus N values of ¢ (counting ¢ = 0), and
as there are two frequencies w_ and w4 for each value of ¢, we find 2N
independent values, equal to the number of degrees of freedom.

The bwo distinet frequencies, and the spectral gap in their dispersion
relation, is characteristic of the perturbation in the periodicity of the linear
chain, here from the variation in atomic mass. An equivalent result appears if
the spring constant alternates between two values, k and k', even if the masses
are identical (see Exercise 1.15). The lower set of frequencies w_(g) is known
ns the acoustic band, while the upper set w, (g) is known as the optical band.
For all the normal modes in the acoustic band, the two atoms in the unit cell
move in the same direction, so that the displacements w, and v, have the
same sign, For a normal mode in the optical band, by contrast, the two atoms
move in opposite directions, so w, and v, have opposite signs. If the charge

on Lhe atoms is dilferent, as for example in an ionic system where neighboring

ntoms have opposite charge, or in a chain where the bonding clectrons are

closer to one atom than its neighbor, the optical band motion will couple
1o the electric field in an electromagnetic wave, through the induced dipole
moment. The upper frequency band is therefore optically active; this is the
origin of the terminology.
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“Optical” branches

Modi normali in un reticolo con base

12 Hiindl =aa = aindl K:comane cdawica -2
W—Q—.—.—l— v (i )= g a+d i (2a) G commarae slagica 31
d*u,{ net) _ ot e i at] - R - . .
= Klutnal—udna)] - Gluina) ~uyiln 1] a ulna)=ge Acoustic and optical phonons [edit

vy F "
o, mer)

L — ==K [ na) —uin a)] -Gludna)—ui[n+1] @] In solids with more than one type of atom (with sither different masses or bonding
) strengths) in the smallest unit cell, there are two types of phonons: acoustic phonons
[[man®— (K + [','l:.a_ + K+ GE" g, =0 0= ﬁ: —|1I'.'-:" + 0+ 2K Gors{ka)  and optical phonons. Acoustic phonons, which are the phonons described above,
" " have frequencies that become small at the long wavelengths, and correspond to

| (K +Ge" g+ [mw® -k +G)le, =0 £ __KN+Ge™

o =F P | sound wawes in the lattice. Longitudinal and transverse acoustic phonons are often
= TLir g

abbreviated as LA and TA phonons, respectively.

Optical phonons, which also arise in crystals with more than one type of atom in the
unit cell, always have some minimum frequency of vibration, even when their
f— wavelength is large. They are called oplical because inionic crystals (lilke sodium
chloride) they are excited very easily by infrared radiation. This is because they
! | ‘iIT correspond to a mode of vibration where positive and negative ions at adjacent
{ N\ | lattice sites swing against each other, creating a time-varying electrical dipole
| macae acesicd | moment. Optical phonons that interact in this way with light are called infrared aclive.
' Optical phonons which are Raman aclive can also interact indirectly with light,

_ K through Raman scattering. Optical phonons are often abbreviated as LO and TO
A Carnera - 2105 e e |

http://www.padova.infm.it/carnera/Didattica/Struttura%202004-2005/Files%20pdf/Fononi05.pdf

When the unit cell consists of two different atoms (or sites), “optical phonons” appear
Optical means barely that an electric dipole can be associated to the oscillation
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Phonons and collective excitations

—hCreatmg and destrm. ing phununs

eirhitr:irji number of phundns can:he excited in each :ﬁude — phunﬁus _

are bosons:

Mathematics can be developed
to define quantum operators
formally similar to those adopted
for the photon description of the
radiation field:

* Phonon similar to photons

* They both are “bosons”

coherent) motion .of manv phvsical particles. .

In contrast to quasiparticles, collective excitations are bosons, and they bear no
resemblance to constituent particles ofreal svstem. They involve collective (1.e..

*Phonon: Corresponds to coherent motion of all the atoms in a solid — quantized
- lattice vibrations -with tvplual energy scale of i = 0.1 eV

'Ell:ll’l]ﬂ Bnu.nd state of an ElE"trc:n :md a hule wnh blndlng Energve ,-J sa=0.16V .

-Plasmun: Cn]lective E:!-:citatinn c:f an Enti.re Electrc:n- oas relative te thE lat-tice c:f :
ions; its existence i1s a manifestation of the long-range nature of the Coulomb
" intéraction. The energy scale of plasmons is 7 /7522 /FH 5 _20e%

*Magnon: Collective excitation of the'spin degrees of freedc:m on the crvsta.l.hne
lattice. It corresponds to a spin wave, with an energy scale of

e 0001—-01@ /

http://www.physics.udel.edu/~bnikolic/ieaching/phys624/phys624.html
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Quantum character of phonons

To recapitulate:
# Lattice vibrations, in the harmonic approximation, described as
normal modes of the crystal;
¢ Each normal mode has the same Hamiltonian as a harmonic os-
cillator:

# The energy in each normal mode &

The collective excitation of the
crystal lattice can be regarded
as a sort of quasi-particle with
guantum character

Energy quantization as for photons: E = (n+1/2)hv
(but the quantum energy is by far smaller)

We want now to demonstrate, in a striking manner, the quantum character of phonons

We will evaluate the internal energy of a lattice at temperature T associated with phonons

In general:
<E >= ) (quantum of energy)

allfreq
x (average number of normal modes)]

Scuola Dottorato da Vinci — 2009/10 Proprieta piccola e piccolissima scala

Assuming continuous variables
(i.e., assuming very many, slightly spaced, energy levels):

<E>= j

x (density of modes per energy) w
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Density of states |

The density of states is a measure of how many states are allowed for a certain value of a quantity
(typically, wavenumber, frequency, energy...)

We found for the linear chain (one dimensional problem):
Quantization of the wavevector q,=m (27/r,)/N
Assuming continuous variables and considering that L=r,N is the total size of the sample we have:
q=n2mL
The allowed states are uniformly distributed in the reciprocal (g) space with spacing 27/L

4.4 Three dimensions — g(E)

Apply periodic boundary conditions along r, v and z. The number
of states in the reciprocal space volume dEzdk,dk; is then

LyLyL v

V=2 1 1 . — L Al 1
[]'L J“[]- _!_,'[.l' Z ﬂ.d—?‘ []l j"[]- .!JI[.|| X

for erystal volume V7. Now assume that the crystal is isorropic — w
depends only on magnitude of £, not its direction. Then

and the number of states with modulus of wavevector between & and
T T #
k+dkis

Here we've accounted for all directions, so no extra factor of 2 as in
one dimension when going to g(w ).
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Density of states Il

Density of states as a function of frequency
We want: g(v)dv = g(k)dk = g(v) =g(k) dk/dv

Note: (dv/dk) is the group velocity of the perturbation

Assuming a non-dispersive material, (dv/dk)

= 27Vsoung, SPEE of sound

Note: speed of sound is typically depending on direction and on the mode

(transversal or longitudinal)

1-Dimensional
Define the density of states in frequency: number of allowed states
between w and w + dw is glw| dw. This must be the same as the
number in the region of k-space containing states in that frequency
interval, soin) < k& < 7/a

or

dw o dk

50

3-Dimensional

But we do have to include all the modes (acoustic, optic, longitudinal,
transverse), each with its own dispersion relation, so
v

) — Z L ._3__.f]w'.s
gl ] =— = = lig .
= -_)’.T: \ ! [].1'

&

where s denotes the mode. Non-dispersive system If we assume that

g(v)dv=4v > -

acoustic modes

and }
dk 1
dwg g
!‘u 'l
gt | = —x .
2 o 2= - rf’

|4

sound

Scuola Dottorato da Vinci— 2009/10
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Normalization (Debye model)

In the linear chain, the total number of normal modes of oscillation was N
In the 3D case, we expect a maximum number 3N
Integral limits :

It must be: 3N = jg(v)dv o
allowed frequencies ‘ O’VD with : Ig(y )d v =3N
0
_ _ thatis:
A maximum allowed frequency is :
' | 9Nv i i
defined for phonons (not for photons!) vy =3 sound (assuming only one acoustic mode)
N
The D_ebye frquency depends on the Considenng a solid to be a penodic array of mass pomnts, there are constraints on
material propertles (denS|ty, Speed of both the minimum and masimum wavelength associated with a vibrational mode.
sound) -
A Debye temperature can be defined as | +ld}e
To = hvifks VAN s
n=3
The occurrence of the maximum hn= 2=

allowed frequency is in agreement with | " /"‘“\_/,. n-2

the presence of a minimum allowed
wavelength for the acoustic vibrations T T T et AL
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Specific heat of the “phonon gas”

Wehave, thus:  <E>=  [hvm,g(v)dv— jhvn g(v)dv
all allowed freq
_ 1
Since phonons are bosons, statistics is of the Bose-Einstein kind: N, = Thy
ekel —1
By definition, the specific heat is: _10<E>_10 j hy g(v)dv
N dT  NoTy M
e™ -1
One gets sobid 1:sodnm, @5 = 1530 | sobd 2! sodaen chiorde, 8p = 181
For T > T, : ¢ & 3kg (Dulong and Petit!) o ———
ForT<T,:c—>0like T3
The striking agreement with ‘
experimental data confirms the i
guantum character of phonons J:
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Debye temperature/speed of sound

Speed of sound

(longitudinal perturbations)

hdediurm
(mis)
Aluminum 4877
Brass 3475
Brick 4176
Concrete 3200 - 3600
Coppet 3901
Cork J6E - 518
Diarnond 12000
Glass 3952
Glass, Pyrex o640
Gold 3240
Hardwood 39652
lron 5130
Lead 1153
Lucite 2680
FRubber 40 - 150
Steel B100
YWater 1433
Wwood (hard) 3560
YWood 3300 - 3600

Scuola Dottorato da Vinci— 2009/10

Debye temperature

Aluminium | 428 K

Silicon G445 K

Cadmium 209 |

Silver 215 K

Chramium | B30 K

Tantalum | 240 K

Copper 3434 K

Tin fwhite) | 200 K

Gold 165 K

Titaniurm 4200k
[ran 470 1

Tungsten | 400 K
Lead 108 K

Zinc 32T K

Manganese [ 410K
Carbon 2230 kK

Mickel 450 K

IH=! 192 K

Platinum 240k

Debye temperature is associated with speed
of sound, which is in turn associated with
stiffness of the bonds and with macroscopic
mechanical properties
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Reminders of conventional (macro) mech prop

La detormanone & la comeguenzs di ung starzo applicata & un

i Lo sforzo (stress) bderinde. !
- TR .
1 g sforzo = la forza per unita . B Lz defmmaziane &
di superficie della sezione o i it T T | | wneralmenia indicals cal
i rasversale nassanic ner un e T r ambala & e unzsta di
i o marticolare del | bnghezrza imzmle L viene
i =] T i allungate di un tratio &1, 2
A - materiale. i L
[ i magretts alla deformamione
| a=F/A ;
! e=51/L
| LTSS ___,l ; — i
s | -
- .d-..-. e Wl
b detormazione & un rappario fr2 due lunghezze, & una grandezza
sl imemianale.
Stress: applied perturbation Strain :measured deformation
o= F/A e=oL/L
(dimension: pressure) (adimensional)
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Tensile strain vs stress measurements

Tensile sirength, o
kN

FAg

Hooke (pure elastic):
strain proportional to stress

Stress o

Strain & = GL/L
«ut tensio, sic vis »
: 4 _
— 3 7 IFl=KiA
Allungamento
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Young’'s modulus

Young’s moduius is a measurement of the elastic behavior (typicaily, upon 1D perturbation)

Elasticita’ per trazione ¢ com pressione

Lin semmplice disposnveo per studizne 1] somporiamenio in fmziane

F-2

E

Lz legee di Hoake fomasos

a=Esz

Lz gquantis’ E & chizmala
. . Reckia
I'I'I'I.Illlu.h.l di ?ul.“lil dul Sl
malerizle = formscs =
misura della durezza  del -
meteriale. hMagmore & 1] sua f Lages

una

walare
Esisleze  deal
detormamnone di tipa tensle.

meggmare & la
mierizle

alla

D loc mucons

L imedado i Haung (&) #dano dalla
e diils prira, papes fla cora
e B B T T =R =y
CEMIrHIDS per recun musmlp

Scuola Dottorato da Vinci—2009/10

(dimension: pressure)

Substance |E, Young's|( Shear k  bulk's Poisson
maodulus modulus modules s ratio
Pa) _|Pa) __ (Pa)
Aluminiu |70 = 10" [24x 10" T75x 10" 034
m
Cast 81 x 10" |34x10" 96x10° QIS
Copper 23 10% 452 10" 13.1x10" 034
Gaold E0x 10" |28x 10" 166x10" 042
Lead LEx 10" |054x 10" 50x10' 045
Silver TEx 10" |28x 10" 1W09x10™ 037
Stecl MGEx 10" |E9=x 10" 1E1x10" 033
Tin 45% 10" | L67Tx 10" 51x10'Y 031
Quarz £2x 10" J30x10" 14x10' 037
fiber
Glass, TOx 10" J30x 10" s0x10% 024
CTDWTE
Phosphor |[2.0x 10" |43 = 10" - 036
hmonze
Per cantranta @1 nala che 1] valare di E per 1l caucaiy’ & =107 Pa.

Weak dependence on the material
(but Young does depend on material!)

Proprieta piccola e piccolissima scala
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Rough microscopic picture |

Drilling dowun: the origins of moduli. Atoms bond togethet, some weakly, some strongly. If a, Foree P
they bind strongly enough they form solids, the stronger the bond, the higher is the melting CF-:-_“(-‘\ SN r—
- -
poitit of the solid. Think of the bonds as little springs (Figure 3). The atoms have an ff“\w(\ﬁ s
S - a : a.+ & L TR .~ EnergyU= Fa2
euilibrium spacing 2o aforce & pulls them apart a little, to @0 . but when it is e -

released they jump back to their original spacing. The same happens in compression because Displacement §

the energy of the bond increases no matter ity which direction the force is applied, as the lower Compression
patt of the figure suggests. The bond energy is a mininoam at the equilibsium spacing, A

spring that stretches by ¢ under aforce F has a stiffness, 5, defined by Energy U

F

S:_
&

aE am am am ma am B o oy

Eguibrivm

~"atom posiion
and this is the same i compression as m tension. ’
) ) ] ] 0 Displacement &
Takle 1 lists the stiffhesses of the different bond types; these stiftheszes largely
determine the walue of the modulus, . The covalent bond is patticularly stff (5= 20200 ] ) _ ]
_ _ _ _ Figure 3. Strefching or compressing an afomic
Himy;, diamond, for instance, has a very high modulus because the cathon atom is small bownd raises ifs energy. s resisfance fo strafoh is
(giving a high bond density) and its atoms are linked by the stiffest springs (5= 200 M. its sfiffhess, 5.

The metallic bond is a little less stiff (5'=15-100 H/m) and metal atoms ate often close-packed,

giving metals high moduli too, though not as high as that of diamond. Ionic bonds, found in

matyy ceramnics, have stiffnesses comparable with those of metals, giving them, also, high moduli. Polymers contain both strong diamond-like covalent
bonds along the polymer chain and weak hydrogen or Van-der-%Waals bonds (5= 052 N/ between the chains; it is the wealk bonds that stretch
when the polymer is deformed, giving them low moduli,

http://www.grantadesign.com/education/sciencenote.htm
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Rough microscopic picture |l

- 2
When aforce F is applied to a pair of atoms, they stretch apart by & & force & applied to an atom corresponds to a stress & ° Filag

where @0 is the atom spacing. A stretch ¢ between two atoms separated by %0 corresponds to a strain © = d iy Substituting these into the

last equation gives

o
e - — &5
]

Tahle 1 Bond stiffnesses, 5

Bond type Examples Bond Stiffness 5 Young’s Modulus E
(IN/m) (GPa)
Covalent Cathon-cathon bond 20 —1%0 200 — 1000
Lietallic All metals 15-75 Al — 300
[ofdc Alamina, Al0s 5—24 3296
Hydrogen hond Polyethylene f—3 41-11
Vatr der WWalls Wakea ns-1 1-4

Comparing this with the definition of Voung’s modulus reveals that B is roughly

E=
2y

The largest atoms [ P =4z 1ot ) bonded with the weakest bonds (5= 0.5 N will have a modulus of roughly

E= Lz I'GFa

£r 10710

Thiz iz the lower limif for true solids and many polymers do have moduli of about thiz walue; metals and ceramics have values 501000 times larger

hecanse, ag Tahle 1 showrs, theit bonds are stiffer.

http://www.grantadesign.com/education/sciencenote.htm

Proprieta piccola e piccolissima scala
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Rubber as a counterexample

O1ie clags of matenals — elastomers (rubber) — have moduli that are much less than 1 GPa. An elastomer is a tangle of long-chain molecules with

occasional crozs-links, as i Figure 404q), az explaited it Density ond atom pacling. The bonds between the molecules, apart from the cross-links, are

weak — g0 weak that, at room temperabure, they have melted. We describe this by saying that the glass temperature TE of the elastomer — the
temperature at which the bonds first start to melt —is below room temperature. Segments are free to slide ower each other, and were it not for the
cross-links, the material would havwe no stiffness at all.

Temperature favors randomness. That is why crystals melt into disordered fluids at
their melting poinnt. The tangle of Figure 4(4) has high randomness, of expressed in the
terims of thermodynatmics, its emfropy is high, Stretching it, as at (), aligns the molecules —
some patts of it now begin to resemble the crystallites shown in the notes on Denstly and
agiom packing. Crystals are ordered, the opposite of randomness, their entropy is low, The 7.0
effect of temperature is to try to restore disorder, making the material try to revert to a
ratudom tangle, and the cross-links give it a “memory”™ of the disordered shape it had to start
with. Bo thete 15 a resistance to streteling — a stiffness — that has nothing to do with
bond-stretching, but with strain-induced ordering. & full theory s complicated — it involves |/
the statistical mechatics of lotig-chain tangles — so it is not easy to caleulate the value of
the modulus. The main thing to know is that the moduli of elastomers are low because they

have this strange origin and that they iticrease with temperature (because of the increasing

tendency to randomness), whereas those of thue solids decrease (hecause of thermal .
. {a) Undeformed (b) Siretched
Expatsio).
Top Figure £ The sfrefching of an elastomer causes
ali gament, producing crystal-like regions.
http://www.grantadesign.com/education/sciencenote.htm Thermal vibrafion drives the sfruchere back fo

the one on the left, resforing ifs shape.
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Energy and hysteresis

s Juanda un matermle alastico viens debirmata, mmagarring

EnETIIA. .
sJussidnergs viena resiiwia quanda la dabormazianea viena
ITeenl. A

er ol |
| 'energia E mmagarrimata in un maternle #lastica, haakiana ; f-’rf /f"r fl
s ggeio & una sharzo assale o, che praduce una deformamone £, & : /

i .'(l-
Hoooe 1, 3 E/ / = .
~ % 2 52 [Imd] ¥ 7 .
2 2E
Elastic energy density /
T
o —

E & lirss sofes alla

[ aurya 4 forza=dabormazrnea

Elastic hysteresis is often seen in stress strain loops
- Some energy is “dissipated”
< Rearrangement of the atomic structure upon
deformation is involved

Materiale tratto da LaLHa Andreozzi - http://wva..df.un{iﬁi.it/’“andreozz/stc elast.pdf
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Poisson’s ratio

j#
i e

H |

| | Coefficiente di Poissen
. ' Materiale _
Cluzndo un solids visne allungsta da uno sborzo di trazione o, - :i _-|i 1 _:|
sumsce una detormarions primana &, nells drenane di o, ma —
51 comiraa anche Bleralmente con una detormazione dascondana _" I N i § B 3 [ 3 3
£2. Il coethciena di Paisson v & uguale a £./& . P
CAUCCIU (1. 50)

gz o Eydmeite lunga gh ass perpendicalin alla diremione dalla - KT
I . [ 1 I Ak

Poisson'sratio: v =--2 iofe T
ExmExy==vE =vw({@E ) & — —
Poison's ratio su scals dilTerensciale. Quindi: &, :83:_V51:_Vﬁ r-llll -]
Volume: V =xyz |'.-|.1III:.': L3R
dIn(V):dIn(x)+dln(y)+dln(z):1+dln(y)+dln(z) P2 T 14
din(x) dIn(x) diIn(x) dIn(x) din(x) dIn(x)
ma: Vel peif finssing 25
din(y) _dy/y & __
din(x) dx/x &

Prisson ratic Litterpretasione
din(z) _dz/z _¢&, _ 0.5 Mo valmme change during
din(x) dx/x & o« treich ) )
cioe: —_—
L) Na hieral comractian

din(y) _din(z) __ 149 = (L4599 T vpical vatoes for elasiomers
din(x) dIn(x) — '|' oy e
Allora,se AV =0 o w L= R WAIID Tar TSI

0=1-2v »>—>v=05

Ideal system (isotropic):v = 0.5

Tipycally O<v < 0.5 (with remarkable exceptions for artificial and natural systems) mj;e;/'a:jvga;;zif‘pﬁt“ﬁaﬁgfng:/zs'tc st o
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Anisotropis & coefTiciente di Poisson

Negative Poisson’s ratio

In un material amagensa, isvrana il coxfhicienie di Passan

namn pod eseere supeTiane a L5,

Tutavia malti  materiali
hialgici hatma om
marfalagia maleca lane
maha camplicata che b
rends amisotrapi  {guoest
maeriali fhama cio®
diffieneati prapristd
shgiichs nzlle  differnem
direriani). Per esempia,
came possiama verificans
wmzianda i muscali  d=l
lraccia, che i ingrossana
oo iderevalmente qoanda
vengana — camrati, il
co=fficiem=s di  Paissan
pud  eseere  malta  pib
grande di L% spessa &
vicinmaa 1,0

Auxetics are materials that, have anegative Paissoneratio Le when stretchead,
hecame thicker perpendicularly to the applied force. This occurs hecause they
cantain hinge-like structures which flex when stretched. Such materials are expected
to hawe interesting mechanical properies such as high g ion and
fracture resistance. This may be useful in applications su or, packing
material, knee and elhow pads, robust shock absorbing material, and sponge mops.

Auxetics can be illustrated with an inelastic string wound around an elastic cord.
When the ends of the structure are pulled apart, the inelastic string straightens while
the elastic cord stretches and winds around i, increasing the structure's effective
volume.

The term auxetic derives from the Greekwaord alEnmikdc (auxetikos) which means, "that which tends to increase” and has its
root in the word alénmc, or suxesis, meaning "increase” (noun). This terminology was coined by Professor Ken Evans of the
University of Exeter. Auxetic materials can be single molecules or a particular structure of macroscopic matter.

Srientists hawe known about auxetic materials for over 100 years hut have only recently given therm special attention. The
earliest published example of a synthetic auxetic material was in Scfence in 1937, "Foam structures with a negative
Poisson's ratic” by R.5. Lakes frorm the Liniversity of lowa. The use of the word auxetic to refer to this property probahbly begar
in 1991,

Typically, auxetic materials hawve [ow d ity, which iswhat allows the hinge-like areas of the auxetic microstructures to flex.

Examples of auxetic materials include:

o Certain rocks and minerals
* Living bone tissue (although this is only suspected)
» Specific variants of palvtetrafluorethylene polymers such as G

~ o i$ % - .,F = M -
: : . — . . o I, B
The history of Gore-Tex started in 1958 when Wilbert Gore identified a market opportunity for polytetrafluoroethylene, or PTFE. This is % ‘ m :‘p’: - iy vhla
better known to us as DuPont Teflon. His idea was to use it as insulation for electronic wires. Mr. Gore and his wife set up shop in the ot ‘AT ' 4 b .
basement of their home to make PTFE-insulated ribbon cables. [ " '?}‘::‘_’. w o |
“‘.' - - § L P
In 1989, Mr. Gore's son Bob discovered that PTFE could be stretched to form a strong, porous material. This discovery came after w. L4 éy‘?. :‘}. '_"" -
. - - ; . B . - E u T et v ‘:?
long experimentation using high temperature and a slow stretching technique. Perhaps in frustration, the high temperature and FAST g ,_’ ; , "9 = g ’
STRETCH production secret was discovered. the unique properties of this material have led to a wide variety of applications. It was = gﬁh ',‘ﬁ " e -
patented and has the trademark GORE-TEX. WS el Tl w "
PR SN e
Gore-Tex expanded PTFE is chemically inert. It has a low friction coefficient, which means it is smooth to the touch. It functions over a  aNn ey . S
) : o . ; S : g = GaNed > .
wide temperature range and has good aging qualities. It is porous, air permeable, strong, hydrophobic, biocompatible and weather ~ “ T e g »
durable. SE T L By

Gore-Tex expanded PTFE Structure of Nodes Interconnected with Fibrils (6700X)
Courtesy of W.L. Gore and Associates

) Materiale tratto da Laura Andreozzi - http://www.df.unipi.it/~andreozz,stc/eiast.par
Scuola Dottorato da Vinci—2009/10 :/
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Shear modulus

Elasticita’ di soorrimentn

Sr o razione pud essere infuithaments ausociata allazione di La defarmaziane di shear o o
tirare ¢ la compressione g un'axione 41 gpint, & faglin & awociatn __ definia come ko soosRmeTia
g um scarimensn, o pid prechiamens a wna resisienza allg della smerficie sumetiare del
ndpna a warrene quands viens anplican ung faraa 8 hlacea 5 divisa il soa sessare
= (nello schema x; ):
Xz
TEE X
Per piccale defarmaziani:
e ny
= Legge di Hooke re=iiy
Lo sforgo di faglio v & o jorzm & wogls per unita i superficie
elln sezone del maswnale sucul & farza agiece G (Pa) ¢' il modulo di taglio o di rigidita’ {shear modualas).
dr

| (&' della stessn ardine di grandezza di E.

e — I
- - ---- iq—

La deformagions &l mplia ¢ & T Dialla tsaria dalla elasticia’ G=E2{ 1+v).

langnlo & deformazione del Paiche' g v 0.5, allora 2G = E< 3G

maarriale i ML 40

daMapplicazione & uno sforan : WNOT A

& ggie _-'I-ﬂ ezl o La sallsciarions di scarrimema mantiene il walome rigarosamems

faghn S un angaln | coETmme. ]

generalmente  espresss  in 1: shear force per surface unit

oo nt T | y: deformation angle

T=7G

G: shear modulus

Slélluaot%ri%g[gg%g gg %Hé?—A?gés?ﬁl i http://www'df'uniP}d}lf?é{Hjﬁ?&%}’/asECA?JEBF’PS’.”';’0 scala http://www.df.unipi.it/~fuso/dida—v. 1 - part 3 —pag. 32




Bulk modulus

Compressione unifornee & neod ulo di compressibilita’ wedulo di compressibilits’ isoterma
S¢ b premiaone viene varin di uma gquami@m’ Ap s avma' in Materiale k(Pa)
carrspandeTza una variazione di valume AV fino al volume V acciaie L6 1011
SCQUA 21 109
zh L dluminic T10%10
p=Fa farre L7 1011
frEfciie 28 1010
olione &l 1010
faine 14 1011
ungsienc 20 1011
F velre per finestra S0=-55 1010
.
-""l- ¥ TABLE 2.2 Relations among the Elastic Constants for |sotropic Materials
i In Terms of:
Elastic
: Constants E v E, G K. v K G A
. - LK _ W3+ 2u/N)
*x ! e “& =8 i T 1+ w/A
[1 modulo di compressihilita’ k (o bulk madufus, Pa) & definito , . - . I f L O,
3 I 1 J -
dalla relazi . 2G 2+ 2G/3K 2(1 + pufA)
relazione: E - O s =g
Ap G "2+ n = 21+
2
bulk modulus: k=-V— Tt — - - K =a+F
AV = 31 - 20) 9 - 3E/G 3
Ev E(1 — 26G/E) 3Ky k.26 ufi
g = : o SR -l -
) . ) (1+ (1 =21 3-E/G 1+ 3
Il ==gno m=gativa indica che ad un aumenia dellb presvion= E 3(1 - 20K -
. .. . . s —— - — = =
carrispand e una dimimriane d=] valome & viceversa. o 201+ #) - 201+ u)
Dalla t=aria d=ll=lasticra’ : k = E
3(1-2v) L e A sono le costanti elastiche di Lame'.

) Materiale tratto da Latga Andreozzi - http://w w.df.unmi.it/“andreozz/stc elast.pdf
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Speed of sound/elasticity

Speed of sound is the distance traveled per a unit oftime by a sound wave propagating through an elastic medium. In dry air
at 20 °C (68 °F), the speed of sound is 343 metres per second (1,125 5. This equates to 1,236 kilometres per hoor (TGS
mph), or about ane kilometar in three secands or approximately one mile in five seconds. The speed of sound in airis

referred to as Mach T by aerospace professionals.

In solids, sound waves propagate as twa different tvpes. A ongitucding! wave is associated with compression and decampression in the direction of

travel, which is the same process as all sound waves in gases and liguids. A fransverse wave, often called shearwave, is due to elastic defarmation of

the media perpendicular to the direction of wave travel, and thus has a polarization in this direction. In general, transverse waves accUr as a pair of

arthogonal polarizations. These different waves (compression waves and the different polarizations of shearwaves) may have different speeds at the
same frequency. Therefore, they arrive at an abhserver at different times, an extreme example being an eathquake, where sharp compression waves

arrive first, and rocking transverse waves seconds later.

The speed of elastic waves in all media is determined by the media's compressibility and density. The speed of shearwaves, which can accur only in

saolids, are determined by the solid material's stiffness, compressibility and density.

Speed of sound in solids [ec

Ih a golid, there iz a non-zero stifiess both forvolumetric and shear defarmations. Hence, itis possible to generate sound waves with different velocitie
dependent on the deformation made. Sound waves generating volumetric deformations {(compressions) and shear deformations are called longitudins
waves ahd shearwaves, respectively. In earthguakes, the carrespaonding seismic waves are called P-waves and S-waves, respectively. The saund
velocities ofthese two type waves are respectively given b\,r“ﬂ:

- /'K+%G_ [ Bl-v)
TN T T\ -2)

@
[— —,
P

where & and G are the bulk modulus and shear modulus ofthe elastic materials, respectively. Mote that the speed of longitudinalfcomprassion waves
depends hoth on the compression and shear resistance properies ofthe material, while the speed of shearwaves depends an the shear properies
anly.

Typically, compression or P-waves travel faster in materials than do shearwaves, and in earthquakes this is the reason that onset of an eanthquake is
often preceded by a quick upward-downward shock, hefare arrival of waves that produce a side-to-side motion. £ is the Young's modulus, and v is
Foissan's ratio.

Far example, for a typical steel alloy, £ = 170 GPa, G= 80 GPa and p= 7700 ko/m”, vielding a longitudinal velocity o of 6000 mis."* This is in reasonab
agreement with =5930 mfs measured experimentally far a (possibly different) type of stepl 9]

The shearvelocity ¢ i5 estimated at 3200 mis using the same numbers.

MECium

Aluminum
Brass
Brick

Concrete
Copper
Cork
Diarmond
Glass
Glass, Pyrex
Gold
Harowood
Iron
Lead
Lucite
Rubber
ateel
Wyater
Wood (hard)
Wood

(rmis)
4877
3475
4176

3200 - 3600
3901

366 - 518
12000
3962
5640
3240
3962
5130
1156
26E0

40- 150
100
1433
3960

3300 - 3600
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Conclusions

v At the nanometer scale, an idela solid (bulk, crystalline, defect-free) can
be modeled as a network of rigid spheres interacting through an
harmonic potential

v" Normal modes of vibration are sustained by the system

v' Macroscopically, they are connected to acoustic vibrations;
microscopically phonons can be introudced

v" Phonons give evidence of thermophysical effects (specific heat):
according to Debye, a critical temperature exists discriminating
classical and quantum behaviors, which depends on the speed of
sound (stiffness and density)

v' Macroscopic mechanical properties depend on speed of sound as well

v" The quantum description required at the ultra-small scale is reflected
iInto macroscopic mechanical properties

Scuola Dottorato da Vinci — 2009/10 Proprieta piccola e piccolissima scala http://www.df.unipi.it/~fuso/dida — v. 1 - part 3 —pag. 35



