Bessel functions and optical terms of atoms
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Quantum mechanics considers all great variety of atomic spectra beginning from the simplest
H-atom spectrum. In this work, we will clarify some important physical processes, taking place
in H-atom (and consequently, in any atom), which were not discussed until now.

The H-atom represents a dynamic paired centrally symmetric system, the proton-electron.
A central spherical component (proton) has the spherical wave field. By this radial field, proton
relates with the surrounding field-space and with an orbiting electron. The orbital motion, in
one’s turn, is associated with the cylindrical wave field of motion-rest. Hence, both dynamic
components of the proton-electron system have to be described, accordingly, by spherical and
cylindrical wave functions.

FElectron transitions in atoms depend on the structure of their radial shells. In the central
spherical wave field of H-atom, amplitude of radial oscillations of a spherical shell of the proton
is
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where é,(kr) = /mkr[2(Jop1/2(kr) £ iYo412(kr)), k = we/c = const is the wave vector. At
that, J(kr) and Y (kr) are Bessel functions; w. is some fundamental “carrier” frequency of the
spherical wave field, i. e. the frequency of oscillations of the pulsating spherical shell of the
proton. Tts amplitude energy takes the following form
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where My is the proton mass, A is the constant equal to the oscillation amplitude at the sphere
of the wave radius (kr = 1). Because kry = 2, and krs = 2, , where z,; and 2, are zeros
of Bessel functions [1], hence, the following relation is between radial shells: rs = r1z,5/201.
Here, the subscript n indicates the order of Bessel functions and s the number of the root. The
last defines the number of the radial shell. Zeros of Bessel functions define the radial shells
with zeroth values of radial displacements (oscillations), i.e. shells of stationary states.
In the eylindrical wave field, the energy Ey of the orbiting electron (in the simplest case) is
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where m, is the mass of an electron; r is the radius of its orbit; v is the frequency and v = wA;
is the amplitude velocity of its oscillations; Af = a/vkr is the amplitude of its oscillations.



Because k = w/c (in Eq. (3)), hence Ef = hv/2, where h = 2rm.ca®[r = 2rm.vA; is an
elementary action. The constant a, equal to the oscillation amplitude at the Bohr orbit ry with
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where h = 2rm.voro = 6.626176-10~2" erg-s is Planck constant. If kro = wrofe = vo/c, where
vo is Bohr speed, then the amplitude of oscillations is equal to Bohr radius: Ay = a/\kro = ro.
In a case when motion-rest exchange (interaction) between spherical and cylindrical fields

the length in one wave, is

takes place, the equality £y = AF; is valid. Consequently, we have
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At p = q, 2,5 = sm and |é,(krs)[> = 1, Eq. 5 is transformed into the spectral formula for
H-atom: 1/X = R(1/m? — 1/n?), where R = MycA?/(hr}) is Rydberg constant.

Because R = Roo/(1 + m./My) = 1.09677583-10° cm™', hence A = roy/AR/(Moc) =
6.370586182:.107*% ¢cm. Assuming in Eq. (1) that kr is equal to the first extremum of the

spherical function of the zero order, unequal to zero (kr = 4.49340946), we find the first maxi-
mal amplitude of radial oscillations:
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The center of masses of the proton, performing such oscillations, forms a dynamic spherical
volume with the radius equal to the amplitude of the oscillations and its volume can be con-
sidered as some nucleus. It should also be noted that exchange by energy between the proton
and the electron in real conditions occurs on the background of exchange with the surrounding
H-atom fields-spaces of a different nature. Hence, the equation of exchange (interaction) should
be presented as Ff = AFE,+ §E, where JF takes into account the factor of external influences
(perturbations).

In conclusion, since quantum numbers in spectral formulae are roots of Bessel functions, we
can regard these as a mathematical variant of spectral terms. We will show also in this work
that cylindrical field is a longitudinal-transversal field of motion-rest, where a field of rest (a
potential field) and the field of motion (a kinetic field) are mutually perpendicular. At that the
longitudinal field negates the transversal field and vice versa. It means that every component
of the longitudinal-transversal field generates its opposition, so both processes are, in essence,
a united process of indissolubility of rest-motion. By virtue of this, the circular motion is the
optimal (equilibrium) state of the field of rest-motion, where “attraction” and “repulsion” are
mutually balanced that provides for the steadiness of orbital motion in the micro- and mega-
world. This is why the proton-electron, as any conjugated pair of the longitudinal-transversal
field in the Universe, is a stable system.
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