Factorized representations of Wigner D-functions
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Recently [1] we have found a factorized form of the “parity-projected” Wigner d’*»(8)-
matrices as a product of two triangular matrices, each composed of Gegenbauer polynomials.
Parity-projected d’*»-matrices naturally appear in three-body problems having definite parity.
Factorized representations allow one to reduce the number of polynomials to be calculated
when composing the d’*»-matrix. The analysis in [1] is based on the use of so-called invariant
(i.e., having explicit tensor form) representations of finite rotation matrices (FRM), R}, (), [2].
All results obtained in [1, 2] are valid only for FRM and d?*7(8) matrices of integer rank
j. Below we present the standard (not the parity-projected) d?(3)-matrix with an arbitrary
rank j (either integer or half-integer) as a product of two triangular matrices composed of
various powers of cos(/2) and sin((3/2). We use standard definitions of the theory of angular
momentum [3]. The Wigner functions D?(a, 8, v) (i.e., the parametrization of the FRM R?(f)
in terms of Euler’s angles: 0 = {a, 3, v}) describe the transformation of an irreducible tensor
T, under the rotation from an “old”, K, to a “new”, K, coordinate frame
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Tim= 3" TieDi(087). (1)
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The nontrivial part of the D?-function is the d’(8)-matrix:

D (08y) = exp (~ika) iy, (8) exp (—imy). (2)
We use below the letter y for a spinor of rank 1/2, while its components are denoted by x,,
= +1/2. An arbitrary spinor can be expanded in the spinor basis, 3(*'/2) as follows:

X = X1/2ﬁ(_1/2) - X—1/25(1/2)a X+1/2 = (X ) ﬁ(ﬂm)a (3)
where the scalar product of two spinors, x and ¢, is (x - @) = X1/2¢-1/2 — X=1/2¢1/2- The
properties of the basis spinors 5(¥1/2) are

(81690 = (=) /b, B = (~1)F76, 0, p= 12 (4)
An analysis of the FRM, similar to that in [2] for the case of integer j, allows one to find
the following invariant spinor representation of the FRM for an arbitrary rank j:

Rim<ﬂ>=<—1>f-kJ(j+ S T e 0 () )

where {3(!/%},, is the tensor product of 2a spinors 3/, and where the components of 3
should be calculated in the (new, or rotated) coordinate frame K. Taking into account that

(1/2) (1/2)

the identity (3) can be rewritten as



B = L+ g, ©)

we obtain another representation of the FRM containing free parameters, which are the com-
ponents of the spinor y:
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In order to obtain a factorized representation for the d’-matrix we assume the spinor y
in (7) to be the basis spinor B/ of the frame K. In this case we have:

a = (BP0 = Dy, p(afy) = —e 2 cos(6/2),
b= (B 7) = DLy p(aBy) = €N sin(52). 8
Direct calculation of the tensor product on the r.h.s. of Eq. (7) gives:
o n i itm j—m-n
{8 s 0 {8 Y np i = (CU Ol s snpamans (B”) T (BLR) - 9)

For a simpler representation, it is convenient to introduce the matrix d’ instead of &7 as follows:

7 —(a - | P=DI2j+1—q)! _ .
dy_iy,-;-1(8) = (sin 8/2) \l (G= (2 +14p) dpn(8), pg=1,2...274+1. (10)
Taking into account Egs. (8) - (10) and omitting the trivial dependence of the Wigner
functions D] (aBy) on the angles @ and «, we obtain from Eq. (7) the final matrix identity:
241

d'(8)=C(8)-AB) or &,(0)= 2 Cn(8)Am(8), (11)

where the matrix elements A,,(3) and C,,(5) are simple powers of cos(3/2):

27 +1—n)! Lon
(:2§'+:2—n—)q)!(Cosﬁﬂ)m2 :

ClB) = On(B) = o (cosBj27™ 1)

These equations show that A is an upper-left triangular matrix, while C is lower-left triangular;

diagonal elements of both matrices equal unity. Note that the matrix elements (12) do not
depend on the rank j: it enters Eq. (12) only in the combination 2j + 1 — n, which determines
the matrix dimensions. Consequently, the A7*! (or C/*!) matrix can be calculated by simply
adding the next highest (or lowest) row to A? (or to C7).
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