Fluoride Crystals: Exotic Materials for Optoelectronic Applications

Alberto Di Lieto
Dipartimento di Fisica Università di Pisa
NEST – Nanoscience Institute - CNR
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

Email: dilieto@df.unipi.it

We developed high-quality single fluoride crystals by Czochralski technique. This activity covers different applications such as LIDAR, DIAL, high-resolution spectroscopy, metrology, biology and optoelectronic.

Among the crystals we can mention LiYF4, LiLuF4, BaY2F8 and LiGdF4 doped with rare earth ions (Ho^{3+} , Tm^{3+} , Pr^{3+} and Yb^{3+}). We have also studied the spectroscopic properties, and by using these crystals we have developed high-efficiency solid state lasers in the near infrared (1 μ m and 2 μ m) and in the visible region, both tunable and fixed wavelength, in cw and pulsed operation regime. Particular attention has been devoted to fluoride crystals doped with Tm^{3+} , and we obtained 70% slope efficiency and 300 nm wavelength tunability. Moreover we studied samples doped with Ho^{3+} in cw and pulsed regime. We have also investigated and compared laser emission in the visible region of three different crystals (YLF, LiLuF and LiGdF) doped with Pr^{3+} for RGB application. Also we studied YLF crystal doped with Pr^{3+} and showed for the first time the development of solid state cryocooler at 125 K temperature.