Monte Carlo methods and application in hadron therapy

Aafke Kraan

Gruppo di fysica medica INFN Pisa

Outline

- Introduction: what is hadron therapy?
- Positron Emission Tomography
- Monte Carlo simulations in hadron therapy
- Data taking: CNAO and CATANA
- Conclusion

Outline

- Introduction: what is hadron therapy?
- Cancer treatment, hadron therapy
- Positron Emission Tomography
- Monte Carlo simulations in hadron therapy
- Data taking: CNAO and CATANA
- Conclusion

Cancer treatment

- Cancer: one of leading causes of death in developed countries
- Treatment with:
- Chemotherapy
- Operation
- Radiation therapy

Radiotherapy

-Photon therapy (x-ray), most conventional

- Electrons, mostly for superficial coverage
-Heavy charged particles, like protons, carbon, ecc: new!
- NB: I focus mostly on protons

Purposes:

-Deliver a high dose to tumoral tissue
-"Conformal" dose distributior on the target volume
-Spare as much as possible health tissues and "Organs at Risk"

Why hadron therapy?

Charged particles have highly advantageous dose profile compared to
photons!

IMRT: 9 Fields

Carbon ions: 2 Fields

Protons: Bragg Peak: Dose spot

- Energy ~ depth
- Nr. protons ~ height
depth[cm]
eminder: dose $[\mathrm{Gy}]=$ Energy $[\mathrm{J}] /$ mass $[\mathrm{kg}]$

Necessity for dose

 is the sensitivity to uncertainties:

- Steep dose gradients
- Matching of many individual pencil-beams

protons
photons
- Anatomical changes: (internal organ motion, changes in air cavities, tumour regression, weight loss
- Proton range (calibration CT apparatus, proton stopping power, implants)
- Patient inter-fractional setup (daily positioning on the couch)
If we miss the target (for whatever reason) we can cause a damage...
(much more serious than for photons)
It would be aood, if we could monitor the ranae of the protons!

Outline

- Introduction: what is hadron therapy?
- Positron Emission Tomography (PET)
- Monte Carlo simulations in hadron therapy
- Data taking: CNAO and CATANA
- Conclusion

Positron Emission

- One of the most promising waysponerige dereedy dose is by means of PET (Positron-Emission-Tomography)
- Therapeutic hadron beams produce $\beta+$ emitters in the body Activity $=$ nr of radioactive decays per time interval
E.g. proton beam:
$\mathrm{p}\left(\mathrm{t}_{\mathrm{min}}^{16 \mathrm{O}}\right)(\mathrm{p}, \mathrm{n})+150 \square 15 \mathrm{~N}+\beta++v \quad \tau 15-\mathrm{O}=121.8$
$p+12 C \square(p, n)+11 C \square 11 B+\beta++v \quad \tau 11-C$
$=1222.8 \mathrm{~s}(20 \mathrm{~min})$

PET detector

Activity

MC simulation 58 MeV protons on PMMA
Dose deposition \square 3-D spatial distribution

- Production of B+ emitters [3-D spatial distributiox

Dose
2-D

$\beta+$ emissions (activity)

2-D: projected on yz

1-D: projected on z

1-D: projected on z

Dose and activity

If we can measure the activity profile with PET, we have indirect information about the dose!

- It comes for free (patient is radioactive anyway)
- Even though the information is indirect, comparing the predicted Monte Carlo profile with the measured profile gives indications about the correctness of the dose deliverv!

The final goal

MC dose calculation

- First developed by Parodi etal, applied in Heidelberg
- Now Pisa is working together with the Centro Nazionale di Adroterapia Oncologica (Pavia) and CATANA (Catania) to realize a treatment control system.
Treatment plan: set of pencil beams

MC expected PET activity (2D) Measured PET activity (2D)

Outline

- Introduction: what is hadron therapy?
- Positron Emission Tomography
- Monte Carlo simulations in hadron therapy
- Data taking: CNAO and CATANA
- Conclusion

Monte Carlo cimn!ilatinme

Tool to calculate energy, dose, activity in materials
Compare MC with data to check the underlying physics
Realistic description of particle interactions, especially in complex geometries and inhomogeneous media where analytical approaches are at their limits of validity

Study quantities that you cannot measure directly Startup and Commissioning of new particle therapy facilities: e.g., shielding calculations; beamline modeling

The ideal Monte Carlo conerator

For a monitoring system of dose/range for hadron therapy, what does an ideal Monte Carlo code need to do?
\checkmark Excellent description of most important proton
(0-300 MeV) interactions on target
\checkmark Electromagnetic
\checkmark Hadronic
\checkmark Excellent prediction
of beta+ activity spatial distribution
\checkmark It should be user-friendiy
\checkmark It should not be too slow

The FLUKA Monte Carlo

 An example of a googleneratofib hadron therapy is FLUKA-Hadron-hadron and hadron-nucleus interactions 0-100 TeV
-Electromagnetic interactions 0-100 TeV
-Charged particle transport including all relevant processes
-Code written in FORTRAN (user friendly)
-Beginning of FLUKA: 1962 (!)

In the following:

- FLUKA description of electromagnetic+nuclear interactions (general)
- PET activity simulations (my own code and simulations, work in progress)

Charged particle interactions

Energy loss through ionization and atomic excitation:

- Bethe-Bloch formula for $\mathrm{dE} / \mathrm{dx}$

Multiple Coulomb scattering
Nuclear interactions
Analytical expression: $-\frac{d E}{d x}=\frac{4 \pi}{m_{e} c^{2}} \cdot \frac{n z^{2}}{\beta^{2}} \cdot\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \cdot\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I \cdot\left(1-\beta^{2}\right)}\right)-\beta^{2}\right]$

FLUKA: electromagnetic

 intornのtinneProton beam:

Dose vs depth energy deposition in water for a 214 MeV real p beam under various conditions.
Exp. Data from PSI

214 MeV p on Water

FLUKA: nuclear interactions

Ingredient in nuclear interactions:
Cross sections

Example of FLUKA prediction with experimental data

Figure 1. Total nuclear reaction cross sections for carbon ions interacting with hydrogen, carbon and oxygen are shown as predicted by FLUKA and GEANT4 together with experimental data (Fang et al 2000, Kox et al 1984, 1987; Sihver et al 1993, Takechi et al 2009, Zhang et al 2002).

FLUKA: photon production

Prompt gamma spectra
Energy spectrum of "photons" for 160 MeV p on PMMA.

FLUKA red line
Data black dots (C.Agodi et al., JINST 2012)

FLUKA $\boldsymbol{\beta}+$ activity modeling

$\mathrm{E}=5_{A} 8_{\text {tivtly }} \mathrm{ardd}_{\text {dose [arbitrary units] }}$

$e+$ trav length before annihilating: 11C

180o-|phi1-phi2|

\$2

FLUKA $\boldsymbol{\beta}+$ activity: in time

- Decay: exponential fall
- Different shapes for long short-lived isotopes

Comparison with data see lat t! ! !

In-beam vs after-beam

We should measure the activity as soon as possible - to avoid patient moving

- to avoid signal to get smaller
- physics: exponential decrease
- biology: biological washout
\square n-beam= during irradiation

पAfter-beam= after irradiation

In-beam measurements are difficult due to beam backgrounds, but important!

LUKA $\beta+$ activity: in space (1D)

Example of in-beam

 1-D z-profilesWe can check the contributions from the different Isotopes

For PMMA, main contributions are 11C and 150.

Data taking

- Introduction: what is hadron therapy?
- Positron Emission Tomography
- Monte Carlo simulations in hadron therapy
- Data taking: CATANA and CNAO
- Conclusion

Proton therapy in Italy

-Where do we get the protons from???

- CATANA: Centro di AdroTerapia e Applicazioni Nucleari Avanzate
- The First Italian Protontherapy Center for the ocular melanoma treatment
- Part of INFN-Laboratori Nazionali del Sud (LSN)
- Proton energy: 58 MeV (Bragg peak at 2.5 cm)
- From cyclotron
- Beam diameter: ~3 cm
- Fondazione CNAO: Centro Nazionale di Adroterapia Oncologica
- Treatment of various tumours
- Proton energies of 50-250 MeV
- Pencil beams (very narrow): FWHM=1.33 cm
- From synchrotron

CATANA

Patient treatment

http://www.Ins.infn.it/CATANA/CATANA/default.ht m

CNAO

The accelerator

Patient treatment

http://www.cnao.it

Our measurements

Before we can work with real patients, we first must check whether the MC code predicts the activity correctly in simple materials...

Instead, our patients are:

- Block of PMMA (plexiglas) PET detector
- Block of Carbon

The Pisa PET-system

 How do we measure the PET beta+ activity?In Pisa (INFN, Università), we have developed a PET system which can do both in-beam and after-beam measurement

The Pisa PET-system

- Two heads, 14 cm apart
- Active area $10 \mathrm{~cm} \times 10 \mathrm{~cm}, 14 \mathrm{~cm}$ apart
- Each head contains 4 modules
- Position sensitive photomultipliers
- Reconstruction algorithm

2D view of the FOV coverage of the $4+4$ modules

From PET images to activity distributions

ne PET system gives us PET images
xtract a time and spatial distribution for activity

From PET images to activity distributions

Example of a time-distributions of the activity for 3 minutes or irradiation

- Monte Carlo and data aren't quite the same!
- FLUKA not right? Nuclear cross sections not right?
- Data not right? Problem in reconstruction? Counts not registered correctly?

From PET images to activity distributions

ample of the spatial activity distribution: 1-D profile along the z-axis

Data versus Monte Carlo: PMMA

- Shape isn't quite the same...
- FLUKA not right? Nuclear cross sections not right?
- Data not right? Problem in reconstruction?
- We are still validating the Monte Carlo beta+ activity nuvi
- More measurements for different materials
- More measurements for different times (in-beam, afterbeam)
- Only when the MC prediction and data are corresponding well, wo ran ctart th annly it to roal nationtc

Long-term effects

Monte Carlo is also extremely important to investigate long term

 effects to health Important Issue \square Secondary Neutrons...

Secondary Malignant
 Neoplasms (SMN) in particle therapy

Comparison of relative radiation dose distribution with the corresponding relative risk distribution for radiogenic second cancer incidence and mortality. This 9-year old girl received craniospinal irradiation for medulloblastoma using passively scattered proton beams. The color scale illustrates the difference for absorbed dose, incidence and mortality cancer risk in different organs.

Newhauser and Durante, Nature Rev. Cancer 2011
Risk of SMN Incidence

Conclusions

- Monte Carlo simulations play an important role in medical physics
- Today you saw an example of an application in hadron-therapy: proton range/dose monitoring
- Monte Carlo generators are predicting very well quantities like energy and dose deposition, nuclear cross sections, etc.
- Still, the beta+ activity is not yet perfectly predicted in FLUKA (problem can be in data or in MC).
- At INFN/Università di Pisa, we are working on the development of an in-beam proton range monitoring system, which eventually will be applied to patient treatments

Thanks

- Giuseppe Battistoni
- Valeria Rosso
- Alberto del Guerra
- Niccolo' Camarlinghi
- Giancarlo Sportelli

*Spec's of hadrontherapy monitor

Origin of highly penetrable signals: nuclear processes

*Measure shape and absolute value of dose to check the agreement between the planned target volume and the actually irradiated volume
*The measurement should be done during the treatment (in-beam)
*Must rely on a given secondaries generated by the beam that comes out from the patient, to spot the position of the dose release
*Must be able to deal with the other secondaries that come out that acts like background

baseline dose

 monitoring in HT : PETBaseline for monitor in HT is PET : autoactivation by p \& 12C beam that creates $\beta+$ emitters. *Isotopes of short lifetime 11C (20 min), 150 (2 min), 10C (20 s) with respect to conventional PET (hours)
*Low activity in comparison to conventional PET need quite long acquisition time (few minutes)
*Metabolic wash-out, the $\beta+$ emitters are blurred by the patient metabolism
*No direct space correlation between $\beta+$ activity and dose release (but can be reliable computed by MC)

Energy and dose

The equation relating dose to fluence and stopping power is the starting point of most beam line design problems. From the fiaure :

$$
D \equiv \frac{\text { energy }}{\operatorname{mass}}=\frac{(d E / d x) \times \Delta x \times N}{\rho \times A \times \Delta x}=\Phi \frac{S}{\rho}
$$

dose $=$ fluence \times mass stopping power

