
Compito n. 1 Nome	Cognome	$Numero\ di\ matricola$	

Compito di Fisica luglio 2009 - Prof G Pierazzini

- Modalità di risposta: barrare la casella con il risultato numerico più vicino a quello ottenuto, sostituendo i parametri nelle formule ottenute risolvendo il problema. Scrivete nello spazio vuoto il risultato numerico ottenuto, arrotondando opportunamente. Fare quindi massima attenzione nei calcoli. La tolleranza prevista è ±5% salvo ove diversamente indicato. I punteggi di ciascuna domanda sono indicati tra parentesi: attenzione, una risposta errata verrà valutata con il numero negativo indicato sempre in parentesi, per scoraggiare risposte casuali: è meglio non rispondere che rispondere a caso!
- Si assumano i seguenti valori per le costanti che compaiono nei problemi: intensità campo gravitazionale $g = 10 \text{ m s}^{-2}$, costante gas perfetti $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.

Problema 1:

Una sfera piena di 10 cm di diametro rotola senza strisciare su di una canaletta a forma di U larga 5 cm ed inclinata verso il basso. Si osserva che la sfera, lasciata libera, scende 16 metri lungo la canaletta impiegando esattamente 19.0 secondi.

1. Quanto vale <u>l'accelerazione a cui é soggetta la sfera durante il moto?(2,-1)</u>

 $a \text{ [m s}^{-2}] = \boxed{0.0886} \quad \text{A} \boxed{0.0143} \quad \text{B} \boxed{0.0654} \quad \text{C} \boxed{0.0780} \quad \text{D} \boxed{0.0186} \quad \text{E} \boxed{0.0886}$

2. Quanto vale la velocitá finale della sfera? (3,-1) $v \text{ [m s}^{-1} \text{]} = \boxed{1.68} \quad \text{A} \boxed{1.68} \quad \text{B} \boxed{16.5} \quad \text{C} \boxed{11.1} \quad \text{D} \boxed{4.49} \quad \text{E} \boxed{8.71}$

3. Con che velocitá angolare ruota la sfera dopo aver percorso i primi 4 metri?(3,-1) ω [s⁻¹] = $\boxed{97.2}$ A $\boxed{44.0}$ B $\boxed{195}$ C $\boxed{97.2}$ D $\boxed{268}$ E $\boxed{127}$

4. Quanto vale l'inclinazione della canaletta?(4,-1) θ [0] = $\boxed{0.779}$ A $\boxed{0.889}$ B $\boxed{0.583}$ C $\boxed{10.8}$ D $\boxed{1.63}$ E $\boxed{0.779}$

Si nota che la sfera durante il moto applica una forza tangente alla canaletta di $0.550~\mathrm{N}.$

5. Quanto vale la massa della sfera?(3,-1) $C \text{ [kg]} = \boxed{11.6}$ A $\boxed{2.33}$ B $\boxed{11.6}$ C $\boxed{17.6}$ D $\boxed{33.9}$ E $\boxed{4.45}$

Problema 2: Un sasso nero di capacità termica pari a 1300 J/K si trova inizialmente alla temperatura ambiente di 300 K. Il sasso viene esposto alla lluce solare da cui assorbe nell'unità di tempo un calore pari a 100 W. L'aria - nell'ipotesi di capacità termica infinita - mantiene la temperatura ambiente. Si assuma che il calore ceduto dal sasso all'aria nell'unità di tempo sia proporzionale alla differenza tra la temperatura del sasso e quella dell'aria

$$\Delta Q/\Delta t = 2(T - T_0)$$

Dopo un po' di tempo di osserva che il sasso si è riscaldato e la sua temperatura è diventata stazionaria. Si determini:

1. La temperatura del sasso (5,-1) $T \ [\mathrm{K}] = \boxed{350} \quad \mathrm{A} \ \boxed{425} \quad \mathrm{B} \ \boxed{579} \quad \mathrm{C} \ \boxed{350} \quad \mathrm{D} \ \boxed{517} \quad \mathrm{E} \ \boxed{1150}$

2. l'aumento di energia interna del sasso (5,-1) $\Delta U \ [\mathrm{J}] = \boxed{65000} \quad \mathrm{A} \ \boxed{162000} \quad \mathrm{B} \ \boxed{104000} \quad \mathrm{C} \ \boxed{135000} \quad \mathrm{D} \ \boxed{277000} \quad \mathrm{E} \ \boxed{65000}$

3. Il massimo lavoro ricavabile dalla differenza di temperatura tra sasso e aria (5,-1) L $[J] = \boxed{4881}$ A $\boxed{4880}$ B $\boxed{20300}$ C $\boxed{1150}$ D $\boxed{2580}$ E $\boxed{9160}$