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Abstract

Group theory and theory of Lie algebras are presented in a manner useful for

understanding their numerous applications in physics, having in mind the readers

who are undergraduate or graduate students and teachers in physics.
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Part I

Introduction

It is the aim of this book to present the theory of Groups and Lie algebras in a way suitable

for undergraduate and graduate students in physics. Accordingly, the style is dictated, not

by the request of mathematical rigor, but by the need of facilitating their applications in

physics, which are numerous and which cover a vast range of fields, including areas even

beyond the arenas of physics.

What is a ”group”? The short but precise answer is the following. It is a particular

kind of a set, with elements

a, b, . . . ∈ G, (0.1)

having the following four properties (known as the ”group axioms”):

• For each pair of elements (a, b) of G, there is an element called their ”product”,

a, b −→ a ◦ b ∈ G ; (0.2)

• Such a product operation can obviously be iterated: it is required that they obey the

associativity:

a ◦ (b ◦ c) = (a ◦ b) ◦ c ; (0.3)

• G contains an element called unit element, e, such that

e ◦ a = a , ∀a . (0.4)

• For each element a there is an inverse, called a−1, such that

a−1 ◦ a = e . (0.5)

That is all. It is quite amazing that these simple rules defining a ”group” allow such

a vast number of different types of interesting groups, with rich varieties of characteristics

(see below for some), and lead to a formidable branch of mathematics, overlapping with

geometries, algebra, functional analysis, number theory, topology, theory of differential

equations, matrix theory, etc. The reader will have more than one occasions to get a

glimpse of such a beauty of group theory world, already in this modest introductory book.

In physics, the concept of groups is closely associated with the idea of symmetries,

and more generally, of that of transformations. A crucial question of interest in physics is

whether or not certain things, such as the equation of motion of a system or the shapes

or distributions of objects, remain invariant under changes of variables (e.g., the choice of
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coordinates, of the state vector basis in quantum mechanics, etc.), or if they do not, how

they transform. Indeed, the group theory studies the notion of transformations in their

purest form, classifying and studying possible types of transformation actions and their in-

finitesimal generators, the kind of the spaces on which they act, the properties of subclasses

of transformations, the relations among different types of groups, etc., while discarding all

other attributes (e.g., physical or chemical properties) of objects being transformed. This

is the reason for their universality and for the omnipresence in physics, and, in particular,

for the fact that the representation theory plays the central role in the whole subject.

1 Groups: definitions, examples and basic concepts

In this section the basic definitions and notions are introduced.

1.1 Set theory basics

The notion of sets underlies the group theory in all its aspects.

(i) Elements ai are elements of a set M ,

ai ∈M , M = {a1, a2. . . .} ; (1.1)

(ii) A set M is a subset of N , if all its elements belong also to N ,

M ⊂ N , ∀a ∈M −→ a ∈ N . (1.2)

(iii) The union of two sets is made up of elements which belong either to one or the other,

or to both, of the two sets,

a ∈M ∪N ; if a ∈M or a ∈ N ; (1.3)

(iv) The intersection is composed by the elements which belong to both sets

a ∈M ∩N ; if a ∈M and a ∈ N ; (1.4)

(v) The difference,

N \M ; (1.5)

is a set composed of elements

a ∈ N , a 6∈M ; (1.6)
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(vi) If each element in M has a unique image in N

∀x ∈M −→ y = f(x) ∈ N , (1.7)

in which two distinct elements in M are mapped to distinct images in N , it is an

injective map M → N or a map from M ”into” N .

(vii) If ∀y ∈ N has at least one inverse image x, i.e, .

∃x ∈M such that f(x) = y , (1.8)

the map M → N is surjective or ”onto”.

(viii) If in an injective map M → N each y ∈ N possesses precisely one inverse image

x ∈M , i.e.,

∀y ∈ N , ∃x(unique) ∈M such that f(x) = y , (1.9)

the map is a ”bijection”, ”injective and onto”, or a ”one-to-one map”. In this case

x ≡ f−1(y). f−1 defines the inverse map.

(ix) In any set, equivalence relations among its members may be defined in some way. An

equivalence relation must satisfy three properties

1. Reflexivity: a ∼ a

2. Symmetry: if a ∼ b, then b ∼ a ,

3. Transitivity: if a ∼ b and b ∼ c, then a ∼ c.

Once such an equivalence relation is defined, the elements of the set is separated into

disjoint classes of equivalent elements. Each element belongs to only one class.

1.2 Group axioms

A set G, with elements gi ∈ G, i = 1, 2, . . ., is said to form a group if the following

properties (”the group axioms”) are satisfied:

(1) Given each pair of elements g1, g2 ∈ G their ”product” is defined in G,

g3 = g1 ◦ g2 ∈ G ; (1.10)

(2) The group product satisfies the associativity

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 ; (1.11)
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(3) In G there exists a unit element e,

∃e ∈ G , such that ∀g ∈ G, e ◦ g = g ; (1.12)

(4) Each element g possesses an inverse,

∀g , ∃g−1 such that g−1 ◦ g = e . (1.13)

Definition

Note that in general the order in which two elements appear in their product, (1.10),

is significant. A group G is commutative (Abelian) if

g ◦ h = h ◦ g , ∀g, ∀h ∈ G ; (1.14)

otherwise, the group is noncommutative or nonAbelian.

Definition

A group G may contain a finite numbers of elements: it is called a finite group in this

case. Otherwise, it is an infinite group.

Definition

If G as a set contains a continuous infinity of elements, it is a continuous group. Oth-

erwise, it is a discrete group.

Definition

The number of the elements is known as the order of the group.

Observation 1.

It follows from the axioms (1)∼(4) that the ”left unit element” of (3) and the ”left

inverse element” g−1 appearing in (4) are automatically the right unit element and the

right inverse element, respectively. It follows also that the unit element is unique, and

given an element g, its inverse g−1 is also unique. (Exercise: prove these).

Observation 2.

A particular manner its elements are related to each other by the product rule (1) and

other axioms, characterize (i.e., defines) a given group.

1.3 Examples

Here are several examples of groups of interest.

(1) Additive group Z.
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The set of integers Z forms a group under addition:

m ◦ n ≡ m+ n , e ≡ 0 ; m−1 = −m . (1.15)

It is infinite, commutative (Abelian) and discrete.

(2) Additive group R.

The set of real numbers R forms a group under addition:

x ◦ y ≡ x+ y , e ≡ 0 ; x−1 = −x . (1.16)

It is continuous (hence necessarily infinite) and commutative (Abelian).

(3) The set of real numbers R do not form a group under ordinary multiplication, as the

inverse of 0 does not exist. The set R \ {0} forms a multiplicative group R+, with

x ◦ y ≡ xy , e ≡ 1 ; x−1 =
1

x
. (1.17)

(4) SN is a group of permutations of N objects. For N = 3, S3 consists of the following 6

elements

e : (ABC)→ (ABC) ; (12) : (ABC)→ (BAC) ;

(31) : (ABC)→ (CBA) ; (23) : (ABC)→ (ACB) ;

(123) : (ABC)→ (CAB) ; (321) : (ABC)→ (BCA) .

Note that the multiplication rules are (12) ◦ (23) = (123), (23) ◦ (12) = (321), etc.

As these examples show it is a noncommutative (nonAbelian) group. (Exercise:

complete the multiplication table for S3)

It is a finite group (the number of the elements being 6); it is discrete and noncom-

mutative. Thus the order of the group S3 is six. Analogously the order of SN is

N !.

(5) Triangular matrices of the type

T =

{(
a b

0 c

)
, a, b, c ∈ R, a > 0, c > 0

}
, (1.18)

form a group, under the standard matrix multiplication rule. (Exercise: find the unit

element and the inverse element for each of them.)

(6) The set of complex (vice versa, real) regular N ×N matrices form a group called the

general linear group, GL(N,C) or GL(N,R), under the standard matrix multipli-

cation. Special linear groups SL(N,C) or SL(N,R) are groups of regular N × N
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complex or real matrices M of unit determinant, detM = 1. For instance,

SL(N,C)) = {MN×N | detM = 1 } . (1.19)

(7) The set of unitary N×N matrices form the unitary group U(N) or the special unitary

group SU(N),

U(N) = {UN×N |U †U = 1} ; SU(N) = {UN×N |U †U = 1 , detU = 1} .
(1.20)

The unitary groups are groups of linear transformations acting on N -component

complex vectors z, such that the inner product

w† · z =
∑
n

w∗nzn (1.21)

is invariant under the action of U :

z → U z , w → U w . (1.22)

(8) The (real or complex) orthogonal groups O(N) or special orthogonal groups are formed

by the set of orthogonal matrices

O(N) = {{ON×N} |OTO = 1} ; SO(N) = {{ON×N} |OTO = 1 , detO = 1} .
(1.23)

The orthogonal group of transformations leave the inner products of vectors defined

by

x · y = xT · y = xiδijyj (1.24)

invariant. In other words they leave the metric 1ij = δij invariant,

OT
1O = 1 . (1.25)

Elements of the familiar two-dimensional rotational group SO(2) have the form,

x→ Ox
′
, O =

(
cos θ sin θ

− sin θ cos θ

)
, 0 ≤ θ < 2π . (1.26)

(9) The real or complex symplectic groups, Sp(2N ;R) or Sp(2N ;C) are groups of 2N×2N
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matrices, which transform 2N -component vectors,

q1

...

qN
p1

...

pN


→M



q1

...

qN
p1

...

pN


(1.27)

such that the metic

J =

(
0N 1N

−1N 0N

)
(1.28)

is left invariant,

MTJM = J . (1.29)

In other words, the symplectic product of the two vectors

(
qT pT

)(1) · J ·
(
q

p

)(2)

=
N∑
i=1

(
q

(1)
i p

(2)
i − p

(1)
i q

(2)
i

)
(1.30)

is kept invariant under Sp(2N ;R). These structures are familiar from classical me-

chanics in the canonical formalism: the Hamilton (canonical) equations, Poisson

brackets, etc.

(10) The Euclidean groups, En, are defined as the group of rotations and translations

in n dimensional Euclidean space, respectively. For instance, E2 is the group of

transformations,

x′ 1 = x1 cos θ + x2 sin θ + b1 ; x′ 2 = x2 cos θ − x1 sin θ + b2 . (1.31)

(11) The Lorentz group SO(3, 1) is a group of transformations which leave invariant the

Minkowski metric

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (1.32)

i.e.,

g → ΛTgΛ = g . (1.33)
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Four vectors

x =


x0

x1

x2

x3

 (1.34)

tranform as

x→ Λx, (1.35)

such that the scalar product

x · y ≡ xµyµ = xµgµνy
ν = x0y0 − x · y (1.36)

remains invariant.

(12) The Poincaré group is a group acting on four vectors in Minkowski space: its elements

consist of a Lorentz transformation followed by a spacetime translation,

x→ Λx+ b . (1.37)

The Poincaré group does not leave invariant a four vector squared, xµxµ, but their

difference squared,

(x− y)µ(x− y)µ , (1.38)

and thus the geodesic element

dxµdxµ = gµν dx
µdxν . (1.39)

1.4 Rings and fields

A notion closely related to the groups is that of a ring. A commutative group R, with the

group product defined by the addition rule,

x ◦ y ≡ x+ y , (1.40)

in which also the product of two elements xy ∈ R are defined, with the following properties,

(xy)z = x(yz) , (x+ y)z = xz + yz , (1.41)

is known as a ring. The unit element of the ring is the zero element 0 of the addition

group. If the all the elements other than 0 form a group under the multiplication, then R

is a division ring (or a division algebra).

In general, the multiplication rule is not commutative. If it is commutative, then

the division ring R is called a field. In the case of continuous division rings of Abelian
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multiplication rule, there are only three known such fields: the rational numbers Q, the

real numbers, R, and the complex numbers, C.

1.5 Subgroups and homomorphisms

The structure of subgroups and mapping between the groups provide us with powerful

tools for analyzing the properties of groups.

(a) A subset of group elements in G,

h1, h2, . . . ∈ H ⊂ G , (1.42)

is said to constitute a subgroup of G, if they form themselves a group,

hi ◦ hj ∈ H (1.43)

under the multiplication rule of G. The unit element itself always forms a subgroup,

I ⊂ G. The whole group G is also a special ”subgroup”.

(b) A subgroupf of G, H, is called an invariant subgroup, or a normal subgroup, if

g h g−1 ∈ H , ∀h ∈ H , ∀g ∈ G . (1.44)

A group without invariant subgroups other than I and G, is called simple. A group

without Abelian invariant subgroup other than I is called semi-simple.

(c) A map from a group G to another group G∗, G→ G∗,

g ∈ G −→ f(g) ∈ G∗ , (1.45)

such that

g1g2 −→ f(g1g2) = f(g1)f(g2) , (1.46)

namely, the group product rules are respected, is called a homomorphism from G to

G∗. Note that f(e) = e∗ is the unit element of G∗ and the inverse element of G maps

to the inverse element of G∗, i.e.,

f(g−1) = (f(g))−1 . (1.47)

The subset

k ∈ K ⊂ G, f(k) = e∗ , (1.48)

or, the set of all inverse images of the unit element of G∗, f−1(e∗) ∈ G, forms the

kernel of the homomorphism, G→ G∗.
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The kernel K is necessarily an invariant subgroup of G, i.e.,

∀g ∈ G, gKg−1 −→ f(gKg−1) = f(g)e∗f(g)−1 = e∗ . (1.49)

(d) If the map g → h(g) above from G to G∗ is one to one (bijective), the map is an

isomorphism.

(e) An isomorphism from a group to itself, G → G, is known as an automorphism. Two

automorphisms can be multiplied: the identity element is the trivial one:

gi → gi , ∀gi ∈ G , (1.50)

the inverse can be defined obviously as the map is one to one. The ensemble of

automorphisms G→ G form a group, Aut[G].

f) A particular type of an automorphism is given by using a fixed element g ∈ G and

defining the map,

∀x ∈ G , x→ x′ = gxg−1 ∈ G . (1.51)

This is known as an inner automorphism.

(g) If N ⊂ G is a subgroup of G, then gN - the set of all elements of the form,

g ni, g ∈ G, ni ∈ N ⊂ G, (1.52)

collectively regarded as an element - form a set called left coset and denoted by G/N .

The right coset can be defined analogously.

If N ⊂ G is an invariant subgroup of G, then the left coset forms a group under the

multiplication rule

g1N · g2N ∼ g1g2N . (1.53)

Note that

g1N · g2N = g1g2(g2)−1Ng2N = g1g2NN = g1g2N . (1.54)

(h) If K ⊂ G is the kernel of the homomorphism, G→ G∗,

g ∈ G −→ f(g) ∈ G∗ , (1.55)

k ∈ K ∈ G, f(k) = e∗ , (1.56)

K is an invariant subgroup of G (see the point (c)). The map from the left coset

G/K to G∗,

G/K → G∗ (1.57)

is an injection. If the map G→ G∗ is surjective (each element of G∗ has at least one

inverse image in G), then G/K → G∗ is an isomorphism.
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The proof goes as follows. Let a and a′ be two elements of G, such that

f(a) = f(a′) = a∗ . (1.58)

Then

a−1a
′ −→ f(a−1)f(a

′
) = (f(a))−1f(a

′
) = (a∗)−1a∗ = e∗ , (1.59)

therefore

a−1a
′ ∈ K . (1.60)

That is, a and a
′

belong to the same coset,

aK = aa−1a
′
K = a

′
K . (1.61)

Therefore the map G/K → G∗ is injective. If G → G∗ is also surjective, then the

above shows that there is one-to-one map between the elements of the groups G/K

and G∗: it is an isomorphism.

(i) Representation: Let V be an N dimensional vector space and GL(V ) be a group of

linear transformations acting on V . That is:

x ∈ V ; R ∈ GL(V ) , x→ Rx , (1.62)

where R is a N ×N regular matrix. A map from a group G to the group of matrices

GL(V ),

g ∈ G −→ R(g) ∈ GL(V ) , (1.63)

such that

g1 ◦ g2 −→ R(g1 ◦ g2) = R(g1)R(g2) , (1.64)

is known as a representation, and denoted as R = {R(g), V | g ∈ G}. Clearly, R(g)

themselves form a matrix group, and a representation is a homomorphism from G to

N ×N matrix group R(g). It follows that

R(e) = 1N×N . (1.65)

The Part III will be dedicated to the study of representation theory.

♣ Any group G has always the so-called trivial representation,

∀g ∈ G −→ R(g) ≡ 1 . (1.66)

♣ If there are two representations

R = {R(g), VN×N | g ∈ G} and R̃ = {R̃(g), ṼN×N | g ∈ G} (1.67)
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of the same dimension N , and if there exists a fixed regular N × N matrix S such

that

R̃(g) = S R(g)S−1 , ∀g ∈ G , (1.68)

then the two representations are said to be equivalent.

♣ If a representation of a group G is described by unitary matrices R, then it is a

unitary representation.

More about the representations (Part III) later.

(j) Given two elements a, b of any group G, the product

a b a−1 b−1 (1.69)

is called the commutator of a and b. When the two elements commute, that is,

a b = b a , (1.70)

their commutator is equal to the unit element, e. (Exercise: prove it).

An element of a group, z ∈ G, which commutes with all the elements of the group,

z ◦ g = g ◦ z , ∀g ∈ G , (1.71)

is known as a center element of G. The set of all such elements form the subset called

center, C, of the group G. C is an Abelian invariant subgroup of G.

(k) In any group G, two elements a, b ∈ G connected by a conjugation relation

∃g ∈ G , b = g a g−1 , (1.72)

are said to belong to the same conjugacy class. This is an example of the equivalence

relation mentioned at (2.1), (ix).

The unit element forms its own conjugacy class.

2 Finite groups

Many of the characteristics of the group theory manifest themselves already in finite groups

(groups with finite number of elements). Let us illustrate some of the concepts introduced

above in simplest such groups of physical interest.
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g1 \ g2 e a
e e a
a a e

Table 1: Multiplication table for C2

g1 \ g2 e a b
e e a b
a a b e
b b e a

Table 2: Multiplication table for C3

2.1 C2

The simplest nontrivial group have just two elements (e, a), a 6= e. The consistency of

the group multiplication rules tell us that the only possibility is the rule give in Table 1.

Obviously, a−1 = a. Note that it would be inconsistent to assume

a ◦ a = a . (2.1)

It is also known as a cyclic group of order 2, Z2. Its one-dimensional representation is:

R(e) = 1 , R(a) = −1 . (2.2)

2.2 C3

There exists only one group of order three, C3. Its three elements e, a, b are multiplied

with each other according to Table 2. It is also called the cyclic group of order three, Z3.

Its one-dimensional representation is

R(e) = 1 ; R(a) = e2πi/3 ; R(b) = e4πi/3 . (2.3)

2.3 Cyclic groups Cn or Zn

The cyclic group of order n has n elements,

e, a, a2, . . . , an−1 , an = e . (2.4)

The cyclic groups are all Abelian. (Exercise: find the one-dimensional representation of

Zn.)
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g1 \ g2 e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 3: Multiplication table for D2

g1 \ g2 e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Table 4: Multiplication table of the cyclic group C4 or Z4

2.4 Permutation group SN

The group SN of all permutations of N objects, (1, 2, 3, . . . , n) plays an important role in

physics and mathematics. The generic element of SN may be represented as(
1 2 3 . . . N

a1 a2 a3 . . . aN

)
(2.5)

with an obvious notation, where (a1, a2, . . . , aN) is some permutation of (1, 2, . . . , N). The

unit element corresponds to (
1 2 3 . . . N

1 2 3 . . . N

)
. (2.6)

The product is defined by a successive application of two permutations, and the set of all

such permutations form a finite, noncommutative group of order N !.

The irreducible representations (see below) of the group SN can be summarized in

Young tableaux, to be discussed later.

2.5 The group D2

The simplest noncyclic group has order four. It is the four group, D2, defined by the

multiplication properties summarized in Table 3. The group D2 arises as the symmetry

group of transformations leaving invariant a rectangle, Fig. 1

Clearly, the elements (e, a) constitute a subgroup, identical to C2, so do the pairs (e, b)

or (e, c). But not the subset (e, a, b).

Note that the group D2 and another group of order 4, C4 or Z4 (see Table, 4) have

indeed different multiplication rules among the four elements.

19



1 2

3 4

a

b

Figure 1: A rectangle left invariant under the reflections a, b, and angle-π rotation, c.

2.6 D3 or S3

Another important example is the dihedral group of order six, D3. It can be defined as the

group of transformations acting on a regular triangle and leaving it unchanged (reflections

about the three axes passing through the three vertices, and angle 2π/3 and 4π/3 rotations

around the center). See Fig. 2. The multiplication table is given in Table 5, where the

names of the elements are given according to how the three vertices of the triangle are

permuted by the operations of reflections and rotations. Not surprisingly, the dihedral

group D3 coincides with the order-three permutation group, S3, mentioned in the example

4, Section 1.3.

The elements of D3 or S3 are divided in three conjugacy classes, [1] e itself; [2] three

exchanges, (12), (23) and (31), and [3] two cyclic permutations, (123) and (321).

2.7 D4 or D8

The dihedral group of order eight, D4 (or D8), can be analogously constructed as the group

of reflections and rotations acting on a square and leaving it invariant (Fig. 3). Note

that, unlike the case of D3, D4 (D8) is not equivalent to the permutation group S4. The

multiplication table for D8 is given in Table 6 .

2.8 Generalizations

Clearly by considering more complicated two dimensional poligons, or three-dimensional

crystals or molecules of different shapes and with different symmetries, one is led to large

classes of finite groups. They will not be discussed here. Some of them are discussed in

Landau and Lifshitz [9].
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1

2 3

Figure 2: A regular triangle left invariant under the reflections (12), (23), (31), and angle
2π/3 and 4π/3 rotations (123) and (321).

g1 \ g2 e (12) (23) (31) (123) (321)
e e (12) (23) (31) (123) (321)

(12) (12) e (123) (321) (23) (31)
(23) (23) (321) e (123) (31) (12)
(31) (31) (123) (321) e (12) (23)
(123) (123) (31) (12) (23) (321) e
(321) (321) (23) (31) (12) e (123)

Table 5: Multiplication table for D3 or S3

g1 \ g2 e a b c d f g h
e e a b c d f g h
a a e g h f d b c
b b g e f h c a d
c c f h e g a d b
d d h f g e b c a
f f c d b a g h e
g g b a d c h e f
h h d c a b e f g

Table 6: Multiplication table for D8 (or D4)
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1 4

2 3

b

ac

d

Figure 3: A square left invariant under the reflections a, b, c, d and angle f = π/2, g = π
and h = 3π/2 rotations.
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Part II

Lie Groups and Lie algebras

The concepts of Lie groups and Lie algebras are introduced. The invariant integration over

the group is defined. The local properties of a Lie group are described by the associated

Lie algebra. Some global aspects of the Lie groups are discussed in terms of homotopy

groups.

3 Lie groups

Consider a continuous group, G, whose elements are expressed by a set of continuous

parameters {α} = {α1, α2, . . .},

A ∈ G , A = A(α) = A(α1, α2, . . . , αr) . (3.1)

The parameters are chosen such that

e = A(0) = A(0, 0, . . . , 0) . (3.2)

We require the properties of:

(1) Closure:

A(α)A(β) = A(γ) , (3.3)

where γ is a differentiable function of α and β:

γ = f(α, β) , (3.4)

such that

f(0, γ) = f(γ, 0) = γ ; (3.5)

(2) Inverse:

A(α)−1 = A(α′) , (3.6)

where α′ is a differentiable function of α;

(3) Associativity:

A(α)(A(β)A(γ)) = (A(α)A(β))A(γ) , (3.7)

that is,

f(α, f(β, γ)) = f(f(α, β)), γ) . (3.8)

A continuous group with these properties are known as a Lie group.
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Example 1

The group under the addition R of real numbers, form a Lie group.

Example 2

S (a circle)

θ1 ◦ θ2 = θ1 + θ2 , (3.9)

e = 0 , θ−1 = −θ , (3.10)

is a Lie group.

Example 3

The groups, SU(N), SO(N), USp(2N), etc. are all Lie groups.

3.1 Invariant integration

When the range of the parameters {α} = {α1, α2, . . .} describing a given Lie group is finite,

the group is said to be compact. The groups O(N), SO(N), U(N), SU(N) are all compact,

whereas SL(N,R), SL(N,C), E2, E3 are non compact, as their parameters can become

arbitrarily large.

The concept of invariant integration over the group can be illustrate by using the stan-

dard integral over the real variable, x, and regarding x→ x+ a as a group transformation

in the additive group, R (see (1.16)). For an arbitrary function f(x) the relation∫ ∞
−∞

dx f(x+ a) =

∫ ∞
−∞

dx f(x) (3.11)

holds, therefore the usual integration measure dx gives an invariant measure for the ad-

ditive group R. The total volume of integration is infinite in this case and the group is

noncompact.

dx is however not an invariant measure for the multiplicative group R+ (see (1.17)), as∫ ∞
0

dx f(ax) 6=
∫ ∞

0

dx f(x) . (3.12)

The invariant measure for R+ is given by dx
x

, as∫ ∞
0

dx

x
f(ax) =

∫ ∞
0

dx

x
f(x) , ∀a . (3.13)

In the case of the triangle matrix group, (1.18),

a =

(
a b

0 c

)
, g =

(
x y

0 z

)
, (3.14)
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a ◦ g =

(
x′ y′

0 z′

)
, x′ = ax ; y′ = ay + bz , z′ = cz . (3.15)

Therefore, by studying the Jacobian from (x, y, z) to (x′, y′z′), the left invariant measure

is seen to be given by
dx dy dz

x2z
=
dx′ dy′ dz′

x′ 2z′
. (3.16)

The integration region is ∫ ∞
0

dx

∫ ∞
−∞

dy

∫ ∞
0

dz , (3.17)

and the group is non compact.

The SU(2) group leaves invariant (see (5.3))

z†z = |z1|2 + |z2|2 = x2
1 + x2

2 + x2
3 + x2

4 . (3.18)

Clearly a point on S3 is transformed to another point on S3: By introducing the four-

dimensional spherical coordinates (at a fixed radius 1)

x1 = cos θ1, x2 = cos θ2 sin θ1, x3 = cos θ3 sin θ2 sin θ1, x4 = sin θ3 sin θ2 sin θ1, (3.19)

the invariant measure is just the volume element on S3:

dg =
1

2π2
sin2 θ1 sin θ2 dθ1dθ2dθ3 , 0 ≤ θ1 ≤ π , 0 ≤ θ2 ≤ π , 0 ≤ θ3 ≤ 2π . (3.20)

The total volume is normalized to 1:
∫
dg = 1.

In the case of SO(3) group, the invariant Haar measure can be constructed in terms of

the Euler angles, φ, θ, ψ, and invariant integratoin can be defined by∫ 2π

0

∫ π

0

∫ 2π

0

sin θ dφ dθ dψ f(φ, θ, ψ) ≡
∫
G

dg f(g) , (3.21)

dg =
1

8π2
sin θ dφ dθ dψ . (3.22)

When the total volume of integration is finite, the group is compact. Otherwise, the

group is non compact.

For a general compact Lie group G, the invariant measure, known as the left Haar

measure, symbolically denoted as dg, satisfies∫
G

dg f(a ◦ g) =

∫
G

dg f(g) ;

∫
G

dg = 1 , (3.23)

where f is a function of the group element g and a is an element of G. They satisfy

furthermore
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(1) If b is a real number ∫
G

dg b f(g) = b

∫
G

dgf(g) ; (3.24)

(2) If f and h are two continuous functions then∫
G

dg (f(g) + h(g)) =

∫
G

dg f(g) +

∫
G

dg h(g) ; (3.25)

(3) If f ≥ 0 everywhere, and not identically zero, then∫
G

dg f(g) > 0 ; (3.26)

(4) If a is an element of G, then∫
G

dg f(g ◦ a) =

∫
G

dg f(g) ;

∫
G

dg = 1 , (3.27)

(5) ∫
G

dg f(g−1) =

∫
G

dg f(g) . (3.28)

Theorem: (without proof) For any compact Lie group there exists a unique invariant

measure. Furthermore, the left invariant measure is automatically the right invariant

measure 1

For two functions of G, f(g) and h(g), a scalar product can be defined as

〈h, g〉 ≡
∫
G

dg h∗(g)f(g) . (3.29)

4 Lie algebras

Consider the group elements close to the unit element,

A(0) = e . (4.1)

Thus in a representation

R = {R(α), V |A(α) ∈ G} (&) (4.2)

R(0) = 1 . (4.3)

1In the case of the group of triangle matrices, for instance, the left invariant measure (3.16) does not
coincide with the right invariant measure.
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By Taylor expanding R(α) near {α} = (0, 0, . . .),

R(α) = 1+ i αa T
a + . . . , (4.4)

or

T a ≡ −i∂R(α)

∂αa
|α=0 , a = 1, 2, . . . , r , (4.5)

are known as the generators of the group G in the representation (&).

The set of generators of the group G, {T a} satisfy the following properties:

(1) {T a} form a basis of a vector space g on the field of real numbers, i.e.,

T a ∈ g −→ c1T
1 + c2T

2 ∈ g , ca, cb ∈ R ; (4.6)

Thus g contains 0.

(2) The set {T a} is closed under commutations,

[T a, T b] ≡ T aT b − T bT a ∈ g . (4.7)

Writing (2) in a standard form (by appropriately choosing the basis of {T a})

[T a, T b] = ifabcT c , fabc = −f bac , (4.8)

{T a}, forms the Lie algebra g = Alg[G] of the group G. The constants fabc characterize g:

they are called the structure constants.

The way the generic group element is parametrized in terms of finite numbers {α} has

a large arbitrariness. A convenient choice is the exponential parametrization, such that

R(α) = eiαaT
a

. (4.9)

This can be interpreted as a particular way of iterating the infinitesimal transformations

to define a finite element

lim
k→∞

(1+ i
αaT

a

k
)k , (4.10)

consistent with the definition of the infinitesimal generators, (4.5) .

The necessity of the commutation relations (4.8) follows from the group multiplication

rules and the smoothness of the group elements in α. Consider the product of two elements

eiαaT
a
eiβaT

a
. It must be equal to another exponential representation with some other

coefficients,

eiαaT
a

eiβaT
a

= eiδaT
a

. (4.11)

Now assume that {αa} and {βa} are all infinitesimal, so the product is close to the identity

element: {γa} must also be infinitesimal and related to {αa} and {βa}. Expanding the

27



exponentials,

iδaT
a = log eiαaT

a

eiβaT
a

= log[1+K] = K − 1

2
K2 +

1

3
K3 + . . . , (4.12)

where

K ≡ eiαaT
a

eiβaT
a − 1 . (4.13)

For small {αa} and {βa} one has

K ' (1 + iα · T +
1

2
(iαT )2 + . . .)(1 + iβ · T +

1

2
(iβT )2 + . . .)− 1

= iα · T + iβ · T − (α · T )(β · T )− 1

2
(αT )2 − 1

2
(βT )2 + . . . (4.14)

thus

iδaT
a ' iα · T + iβ · T − 1

2
[α · T, β · T ] + . . . . (4.15)

Note that the terms (αT )2 and (βT )2 cancel out in the sum (4.12). Thus it must be that

[αaT
a, βbT

b] = −2i(δc − αc − βc)T c ≡ iγcT
c , (4.16)

γc = −2(δc − αc − βc) = αaβb f
abc . (4.17)

In other words the generators must satisfy

[T a, T b] = ifabcT c . (4.18)

Another, simpler way to see the same thing is to consider the commutator of the two

elements,

g(β)−1g(α)−1g(β)g(α)

= (1− iβT + . . .)(1− iαT + . . .)(1 + iβT + . . .)(1 + iαT + . . .)

= 1− αaβb[T b, T a] + . . . = 1 + iγcT
c + . . . , (4.19)

which implies (4.8). Note that the terms (αT )2 and (βT )2 again cancel out completely.

We shall be interested often in unitary representations (with unitary matrices R(α)),

in which case the generators are Hermitian matrices,

(T a)† = T a , (4.20)

and the structure constants fabc are real.

The Lie algebra (4.8) follows uniquely from the multiplication rules of the Lie group G,

and characterizes its local properties (behavior of the group multiplication rules near the
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unit element) completely 2. By the very definition of the representation, the Lie algebra

and the structure constants fabc are uniquely fixed 3 by the group G: fabc are the same,

independent of the particular representation (the dimension of the representation space,

hence the matrix dimension). Indeed the concept of the Lie algebra, the generators and the

structure constants could be defined independently of a particular representation, once the

meaning of the group operations depending on continuous set of parameters is provided

precisely and abstractly.

The Lie algebra relations are subject to a consistency condition

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 , (4.21)

known as the Jacobi identity.

Let us see some examples:

(i) SU(N) group: the generators of the Lie algebra in the fundamental (the smallest

nontrivial) representation are Hermitian, traceless N ×N matrices

(T a)† = T a , TrT a = 0 , a = 1, 2, . . . N2 − 1 . (4.22)

(ii) The three generators of the SU(2) group in the fundamental representation are

ta =
1

2
τa , (4.23)

where

τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
, (4.24)

are known as the Pauli matrices. The Lie algebra su(2) is given by4

[ta, tb] = iεabctc , (4.25)

where ε123 = 1, ε213 = −1 and others are defined by cyclic permutations of the

indices. εabc vanishes whenever two indices coincide. εabc is known as the totally

antisymmetric invariant tensor of the SU(2) group.

(iii) The generators of the special orthogonal group SO(N) is the set of antisymmetric

matrices

(T a)t = −T a , a = 1, 2, . . . ,
N(N − 1)

2
. (4.26)

2Vice versa, the opposite is not always true: a Lie algebra does not always determine uniquely the
corresponding Lie group: see later on the global aspects of Lie groups.

3More precisely, fabc are determined uniquely once a choice of the independent generators is made. As
in any vector space, the choice of the independent basis vectors has a large amount of arbitrariness.

4It is customary to use the lower case symbol for the associated Lie algebra of a given Lie group with
the capital symbol.
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The Lie algebra of the SO(3) group (with three generators of rotations in 3D) coincide

with that of SU(2), that is, so(3) ∼ su(2):

[T a, T b] = iεabcT c . (4.27)

Explicitly,

T 1 =

 0 0 0

0 0 −i
0 i 0

 , T 2 =

 0 0 i

0 0 0

−i 0 0

 , T 3 =

 0 −i 0

i 0 0

0 0 0

 . (4.28)

More about the relation between the two groups, SU(2) and SO(3) later. In quan-

tum mechanics the algebra (4.28) or (4.25) appears as the commutation relations

among the components of angular momentum (or spin) operators, and determine

their quantization and composition rules completely.

4.1 Adjoint representation

Consider a Lie algebra g with the number of the generators, #. It follows from (4.8) that

[[T a, T b], T d] = ifabc[T c, T d] = −fabcf cdeT e . (4.29)

Jacobi’s identity tells then that

fabcf cde + f bdcf cae + fdacf cbe = 0 . (4.30)

Now if we define

(Ta)bc ≡ if bac , (4.31)

and consider them as matrices (a, b, c = 1, 2, . . .#), with bc considered as the row-column

indices. It is a straightforward exercise to prove the matrix relations

[Ta,Tb] = ifabcTc . (4.32)

(The proof is left as an excercise). It follows that {Ta} form a particular representation of

the algebra g, known as the adjoint representation.

4.2 Subalgebras and invariant subalgebras

Consider an algebra Xa ∈ g, and consider a subset h ⊂ g, and the generators belonging to

it:

Y ȧ ∈ h ⊂ g , Xa ∈ g . (4.33)
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If

[Y ȧ, Y ḃ] ∈ h , (4.34)

then h forms a subalgebra of g. Note that 0 and g always form (trivial) subalgebras of any

given algebra.

If furthermore

∀ȧ, ∀b, [Y ȧ, Xb] = cḋY
ḋ ∈ h (4.35)

then Y ȧ form an invariant subalgebra or ideal of g. 0 and g are invariant subalgebras of g.

If

[Y ȧ, Y ḃ] = 0, ∀Y ȧ ∈ h , (4.36)

then Y ȧ form an Abelian invariant subalgebra or Abelian ideal.

A Lie algebra g without invariant subalgebras other than 0 or g, is simple. A Lie

algebra without Abelian invariant subalgebras is semi-simple.

Note that a simple algebra is necessarily semi-simple, but not vice versa.

4.2.1 Invariant subalgebra generates invariant subgroup

Let Y ȧ ∈ Alg[H] where Alg[H] is an invariant subalgebra and Xa ∈ Alg[G], H ⊂ G, and

h = eiαȧY
ȧ ∈ H , and g = eiβbX

b ∈ G , (4.37)

then

g−1hg ∈ H . (4.38)

The proof goes as follows.

g−1hg = g−1eiαȧY
ȧ

g = eiαȧ(g−1Y ȧg) . (4.39)

Now

g−1Y ȧg = (1− iβX − 1

2!
βXβX + . . .)Y ȧ(1 + iβX − 1

2!
βXβX + . . .)

= Y ȧ − iβb[Xb, Y ȧ] +
(−i)2

2!
[β ·X, [β ·X, Y ]] + . . .

+
(−i)n

n!
[β ·X, [β ·X, [. . . [β ·X, Y ]] . . .] + . . .

= γċY
ċ ∈ Alg[H] (4.40)

by repeated use of (4.35).
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4.2.2 Center of the algebra

The set of all elements of an algebra g which commute with all elements of the algebra,

[T ȧ, T b] = 0 , ∀T b ∈ g , (4.41)

form the center of the algebra C
T ȧ ∈ C ⊂ g . (4.42)

The center of the algebra generates the center of the group (but not necessarily, vice versa).

4.3 Killing form (metric tensor)

Define the metric

gab = gba ≡ facdf bdc = f cadfdbc = −Tr(TaTb) . (4.43)

The Cartan criterion for an algebra to be semi-simple is that

det |gab| 6= 0 . (4.44)

The proof is easy: suppose that Y ȧ ∈ I ⊂ Alg[G] is an Abelian ideal, and Xb ∈ Alg[G] is

a generic element of the algebra. Then

gȧb = f ȧcdf bdc = f ȧcḋf bḋc = f ȧċḋf bḋċ = 0 , ∀b (4.45)

hence

det |gab| = 0 . (4.46)

Let us study some examples:

(i) so(3)

[X1, X2] = iX3 , [X2, X3] = iX1 , [X3, X1] = iX2 , (4.47)

fabc = εabc , (4.48)

so

gab = εacdεbdc = −2δab , det g = −8 , (4.49)

and so(3) is semi-simple.

(ii) so(2, 1) algebra is

[X1, X2] = iX3 , [X2, X3] = −iX1 , [X3, X1] = iX2 . (4.50)
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The structure constants are

fabc = Pabcεabc =


−1, (abc) = (231)

1, (abc) = (123)

1, (abc) = (312)

0, otherwise

(4.51)

gab = facdf bdc =

 −2 0 0

0 −2 0

0 0 2

 , (4.52)

and

det g = 8 (4.53)

so so(2, 1) is semi-simple. Actually so(2, 1) and so(3) are both simple.

(iii) E2 is the group of translations

x→ x+ a , y → y + b , a, b ∈ R (4.54)

and rotations (
x

y

)
→
(

cos θ sin θ

− sin θ cos θ

)(
x

y

)
(4.55)

and combinations theirof. The generators can be defined as

T 1 = −i ∂
∂x

, T 2 = −i ∂
∂y

, (4.56)

for the two translations and

R = −i(x ∂
∂y
− y ∂

∂x
) (4.57)

for the rotation. Indeed,

eiaT
1

(
x

y

)
' (1 + iaT 1)

(
x

y

)
=

(
x+ a

y

)
, (4.58)

eibT
2

(
x

y

)
' (1 + ibT 2)

(
x

y

)
=

(
x

y + b

)
, (4.59)

eiθR
(
x

y

)
'
(
x

y

)
+

(
θy

−θx

)
. (4.60)

The algebra of E2 is then

[T 1, T 2] = 0 , (4.61)
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[T 1, R] = − ∂

∂x
(x

∂

∂y
) + x

∂

∂y

∂

∂x
= − ∂

∂y
= −iT 2 , (4.62)

[T 2, R] = iT 1 . (4.63)

Thus

gab = facdf bdc =

 −2 0 0

0 0 0

0 0 0

 , det g = 0 . (4.64)

Indeed, the translations T 1,2 form an Abelian ideal, as evident from the above algebra.

(iv) so(4): It turns out (see later) the SO(4) algebra is locally isomorphic to the direct

product su(2)⊗ su(2). so(4) is thus semi-simple but not simple.

4.4 Casimir operators

Define

C ≡ gabT
aT b , gab = (g−1)ab , gab = fadef bed . (4.65)

Then it can be shown that

[C, T a] = 0 , ∀T a ∈ Alg[G] . (4.66)

The proof is straightforward, if somewhat lengthy. C takes a constant value inside a

representation (Schur’s lemma, see later), characterizing each representation. C is known

as the quadratic Casimir operator.

Ex. 1: so(3) ∼ su(2). From the algebra it follows that the Casimir operator is given by

C = (T 1)2 + (T 2)2 + (T 3)2 . (4.67)

In the context of quantum mechanics these operators represent the square of the angular

momentum, spin, or isospin operators. (See later).

Ex. 2: For so(2, 1) the Casimir operator is

C = (T 1)2 + (T 2)2 − (T 3)2 . (4.68)

5 Global and local aspects of Lie groups

As we have seen a Lie group G uniquely determines its Lie algebra g, but the opposite is

not true in general. The Lie algebra describes the behavior of the group around the unit

element. For instance, the Lie algebra of the SU(2) and SO(3) groups are isomorphic,

[ta, tb] = iεabctc , (5.1)
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that is, su(2) ∼ so(3), but their global properties differ. It turns out that each element

of SO(3) has exactly two inverse images in SU(2), the kernel of the unit element 1 in

SO(3) is {1,−1}. In the following a relevant concept is idea of group manifold, that is, to

consider the set of all possible values the group parameters {α1, α2, . . .} as the coordinates

of a manifold. In the case of SU(2) group, the most general element satisfying

U †U = 1 , detU = 1 , (5.2)

can be parametrized as

U = ei
τa

2
αa =

(
a b

−b∗ a∗

)
, |a|2 + |b|2 = 1 . (5.3)

It represents S3.

5.1 Covering map

Such a relation is a special case of the covering map between two spaces. Consider two

spaces M and N and a map

M −→ N , ∀x ∈M −→ y = f(x) ∈ N . (5.4)

If the neighborhood of each point y ∈ N , Uy, has the inverse image which consists of a

disjoint, numerable set of open sets

f−1(Uy) = V1y ∪ V2y ∪ V3y ∪ . . . , (5.5)

N is known as the base space; M is called the covering space of N . The number of the

inverse images x1, x2, . . . ∈M of each point y ∈ N is the number of sheets of the map.

When the covering space M is simply connected,

π1(M) = 1 , (5.6)

(see the next section more about the first homotopy group π1) it is called a universal

covering space of N .

ex. 1: M = R , N = S1 and

f(t) = e2πit , t ∈ R . (5.7)

The number of the sheets is infinite.
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ex. 2: M = S1 , N = S1 and

f(z) = zn , |z| = 1 → |f(z)| = 1 . (5.8)

This is a n-sheeted cover. This can be reinterpreted as a map from R
2
{0} = C

∗ to C∗.

ex. 3: Consider the n-dimensional sphere M = Sn

x2
1 + x2

2 + . . .+ x2
n+1 = 1 (5.9)

and the n-dimensional real projective space, N = RP n, defined by

(x1, x2, . . . xn+1) ∼ λ(x1, x2, . . . xn+1) , ∀λ ∈ R{0} . (5.10)

As the latter is equivalent to the points of Sn in which the equivalence relation x ∼ −x is

imposed, the map M → N is a two-sheeted covering (or a double cover).

The case we mentioned already is

M = SU(2) ∼ S3 , N = SO(3) ∼ RP 3 (5.11)

The group SU(2) is thus a double cover of SO(3). As SU(2) is simply connected, it is a

universal covering of SO(3).

ex. 4: Another example in the context of group theory is

SU(2)× SU(2) −→ SO(4) (5.12)

which is a two-sheeted map (the kernel of the map is (1,1) and (−1,−1).) Again their

algebras are isomorphic:

su(2)× su(2) ∼ so(4) . (5.13)

ex. 5: M = R
n , N = T n = R

n/Zn. Rn → T n is a infinite-sheeted covering. The case

n = 2 it is a map from a plane to a torus.

5.2 Connected components

Another issue related to the global aspects of a group, as compared to the local properties

(the algebra), is the connectedness of G as a manifold. In a manifold G, if two points a

and b are connected by a continuous path, included entirely in G:

f(t) ∈ G , (∀t, 0 ≤ t ≤ 1), (5.14)

such that

f(0) = a, f(1) = b , (5.15)
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then a and b are archwise connected. The number of the components connected is indicated

as

π0(G) . (5.16)

For example, for the orthogonal groups,

OtO = 1 , (5.17)

so

detO = ±1 . (5.18)

The special orthogonal group is defined as

OtO = 1 , detO = 1 . (5.19)

So the number of the connected components are indicated by π0: thus

π0(O(N)) = 2 , π0(SO(N)) = 1 . (5.20)

for the orthogonal and special orthogonal groups, respectively.

6 Homotopy groups

The global aspects of different Lie groups are further characterized by the general homo-

topy groups, the first of which is the fundamental group already mentioned. Here the

fundamental group is introduced more systematically, and an introductory discussion on

higher homotopy groups is given.

6.1 Fundamental group

Let us consider a manifold M which is archwise connected. Two paths in M ,

γ1(t) , 0 ≤ t ≤ 1 ; γ2(t) , 1 ≤ t ≤ 2 ; (6.1)

can be ”multiplied”, if

γ1(1) = γ2(1) . (6.2)

The product γ2 ◦ γ1 is defined as :

q(t) =

{
γ1(t) if, 0 ≤ t ≤ 1 ,

γ2(t) if, 1 ≤ t ≤ 2 .
(6.3)
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The inverse of γ(t) can be defined as

γ−1(t) = γ(1− t) , 0 ≤ t ≤ 1 , (6.4)

or

γ̃−1(t) ≡ γ(2− t) , 1 ≤ t ≤ 2 , (6.5)

such that

γ−1 ◦ γ = e , e(t) ≡ e = γ(0), ∀t . (6.6)

Two paths γ1 and γ2 are said to be equivalent, or homotopic, if

γ1(t(τ)) = γ2(τ) ,
∂t

∂τ
> 0 . (6.7)

The set of all closed oriented paths in M starting and ending at the point x0, is denoted

as Ω(x0,M) . They can be classified in homotopically equivalence classes. The set of all

oriented paths connecting from the points x0 to x, is denoted as Ω(x0, x,M). Note that

two closed paths in Ω(x0,M) can be multiplied. By substituting each of the paths by the

class of equivalent paths, one can define the product of two classes of homotopic paths.

Theorem: The homotopic classes of orientable paths belonging to Ω(x0,M) form a group

under multiplication, in which an element corresponds to a class of equivalent paths. The

inverse element corresponds to a class of inverse paths. The unit element corresponds

to the class of paths equivalent to e(t) ≡ x0. This group, indicated by π1(M,x0), is

known as the fundamental group (or the first homotopy group) of M . Actually it can be

shown that the group structure does not depend on the initial and final point of the loops,

π1(M,x0) = π1(M,x1), therefore it is often indicated simply as

π1(M) . (6.8)

Examples:

(1) For any contractible space M (e.g., Rn, a disk, Dn, n = 1, 2, . . .),

π1(M) = 1 . (6.9)

(2) As for spheres,

π1(S) = Z ; π1(Sn) = 1 , n ≥ 2 . (6.10)

(3) The plane from which a point is removed, R2/{0}, is homotopically equivalent to a

circle.

π1(R2/{0}) = Z . (6.11)
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(4) For a torus T ,

π1(T ) = Z× Z . (6.12)

Each element of π1(T ) is characterized by two integers (m,n), representing the wind-

ing numbers in one or the other nontrivial cycles over T .

(5) The three dimensional space from which a circle or a line is removed

π1(R3/S) = Z ; π1(R3/R) ∼ π1(S) = Z . (6.13)

(6) The two dimensional plane from which two points a, b are removed is equivalent to

two circles attached at a point, S ∨ S . The fundamental group in this case is

π1(S ∨ S) = Z ∗ Z , (6.14)

where the free product (indicated by ∗) is generated by two elementary windings

around the two circles. If α and β are generic, nontrivial elements of π1(S1) (m 6= 0)

and of π1(S2) (n 6= 0), the elements of π1(S ∨ S) are

1, α, β, αβ , βα, αβα , βαβ , αβαβ , . . . (6.15)

Theorem:

If M is a Lie group, π1(M) is commutative.

6.2 Monodromy groups

Consider a map M → N , with the base space N and the covering space M (see section 5.1).

Each point y ∈ N has a set of inverse images, x1, x2, . . ., such that

f(xi) = y , i = 1, 2, . . . (6.16)

Let us consider a closed path γ(t) starting and ending at y = y0 in N and consider the

associated fundamental group π1(N, y0). If the closed path γ(t) is tiny, around y0, each

inverse image µi(t) will make a closed path around xi = f−1
i (y0). For finite closed loop γ(t)

in N , however, an inverse image xi may not come back to itself but in general ends up at

one of other inverse images, xσi . In other words the inverse image of the closed path γ(t)

may not be a closed path, but a path connecting xi to xσi . The points make permutations x1

x2

...

 γ−1

−→

 σ(γ)


 x1

x2

...

 . (6.17)
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The k × k (k being the number of the sheets) matrix σ(γ) is known as the monodromy

matrix, and the rearrangement of the inverse images (6.17) as the monodromy transfor-

mation. Clearly, σ(γ) depends only on the class of equivalent closed paths in N so is a

function of π1(N). As

σ(γ1 ◦ γ2) = σ(γ1)σ(γ2) , (6.18)

σ’s form a matrix group; it is a group homomorphism from the fundamental group π1(N).

It is denoted as

σ(π1(N)) (6.19)

and is called the monodromy group.

Ex. 1 The map R→ S,

x→ y = e2πix . (6.20)

Clearly,

σ(m) : x→ x+m , m = 0,±1,±2, . . . (6.21)

σ(π1(N)) = Z , (6.22)

the group of integers under addition.

Ex. 2 The map S → S,

w = zn , |z| = |w| = 1 , (6.23)

is a n-sheeted map from a circle to a circle. The inverse images of 1 ∈ S in the second

circle (the base) are

e2πik/n , k = 0, 1, 2, . . . , n− 1 . (6.24)

π1(S) = Z in the base space is mapped to a cyclic group Zn generated by

σ =

(
0 1 2 . . . n− 1

1 2 3 . . . 0

)
, (6.25)

or

σ =



0 0 1

1 0 . . . 0

0 1 0

0 0 1
. . .

0
...

1 0


, (6.26)

acting on the n inverse images of 1. Thus

σ(π1(S)) = Zn . (6.27)
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6.3 Projective spaces, RP n , CP n

The real projective space RP n is defined by the points

(x1, x2, . . . , xn+1) ∈ Rn+1 , (x1, . . . , xn+1) ∼ c (x1, . . . , xn+1) , (6.28)

for arbitrary nonvanishing real number

c ∈ R/{0} . (6.29)

The elements of RP 1 are the straight lines in a plane passing through the origin. The

elements ofRP 2 are the straight lines inR3 passing through the origin. They are equivalent

to the points on S2 in which two antipodal points are identified, S2/Z2. Thus

π1(RP 2) = Z2 . (6.30)

Similarly,

π1(RP n) = Z2 . (6.31)

The points of the complex projective space CP n are defined by

(z1, z2, . . . , zn+1) ∈ Cn+1 , (z1, . . . , zn+1) ∼ λ(z1, . . . , zn+1) , (6.32)

λ ∈ C/{0} . (6.33)

We need n + 1 coordinate neighborhoods to cover the entire CP n space. Introduce the

j-th neighborhood Uj:

(z1, z2, . . . , zn+1) ∈ Uj , if zj 6= 0 . (6.34)

One can introduce the local coordinates there by ζ
{j}
i ≡ zi/zj,

(z1, z2, . . . , zn+1) ∼ (ζ
{j}
1 , . . . , ζ

{j}
j−1, 1, ζ

{j}
j+1, . . . ζ

{j}
n+1) ∈ Cn , ζi ∈ Z . (6.35)

In an overlap region of the j-th and k-th neighborhoods, Uj ∩ Uk zj 6= 0, zk 6= 0, the local

coordinates are related by

ζ
{k}
i =

zj
zk
ζ
{j}
i , ∀i . (6.36)

These relations define the differential manifold CP n.

The simplest example of CP n is n = 1:

CP 1 ∼ S2 , (6.37)

as is well known. The local coordinates (”North” and ”South”) correspond to two stereo-

graphic projections from the north or south poles onto the plane containing the equator.
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CP n is simply connected:

π1(CP n) = 1 . (6.38)

6.4 Higher homotopy groups

The i-th homotopy group πi(M) represents classes of homotopically equivalent maps from

Si to the space M . It can be defined as classes of homotopically inequivalent maps from a

i-dimensional disk Di to M

Di →M , Di = {(x0, x1, . . . xi) , (x0)2 + (x1)2 + . . . (xi)2 = 1 , x0 ≥ 0} (6.39)

such that the boundary circle (sphere) Si−1 (the equator)

Si−1 = {(0, x1, . . . xi) , (x1)2 + . . . (xi)2 = 1} (6.40)

is mapped to a fixed point X0 ∈ M . Equivalently, since a disk Di in which the boundary

circle is considered to be a point is a sphere Si, πi(M) can be defined to be the maps

Si →M , s0 ∈ Si → X0 ∈M . (6.41)

See Fig. 4.

The products in πi(M) can be defined as follows. Consider two maps α and β from a

sphere Si to M belonging to classes in πi(M), as in Fig. 4. Consider Si as consisting of the

northern hemisphere D+ (x0 ≥ 0, see Eq. (6.39)) and southern hemisphere D− (x0 ≤ 0)

whose boundaries are the equator circle Si−1 (x0 = 0), Eq. (6.40). By a map in which the

points of the equator are transformed to a point, s0, one defines a map ψ from Si to Si×Si
which are attached at a point s0. One can define the product of α and β as a map from

Si to M :

αβ(x) ≡

{
αψ , x ∈ D+ ⊂ Si

β ψ , x ∈ D− ⊂ Si ,
(6.42)

as shown in Fig. 5. Clearly, αβ(s0) = X0.

It turns out that for i > 1 the homotopy group πi(M) is commutative:

αβ ∼ βα . (6.43)

This can be proven by rotating Si of the left of Fig. 5 continuously, around the straight

axis passing through the center and the point s0. At the end of angle π rotation, D+ and

D− are interchanged.

The definition of an inverse element and the demonstration that the higher homotopy

groups defined thus satisfy the group axioms, are given, for example, in [6]. A more detailed

discussion of the higher homotopy groups goes beyond the scope of this lecture note. We
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Figure 4:

Figure 5:

43



limit ourselves to giving a few examples, some general results and several useful results in

the cases M = Sn or M = a Lie group, below.

Example: π2(S2) = Z

Nontrivial ”standard” maps from S2 to S2 can be defined as follows. Let

x = (θ, φ) , or r̂ = (sin θ cosφ, sin θ sinφ, cos θ) , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π ,

(6.44)

be the points on the first sphere; and the coordinates of the second sphere be

y = (Θ,Φ) , or R̂ = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) . (6.45)

Clearly the map x→ y:

Θ = θ , Φ = nφ , n = 0,±1,±2, . . . (6.46)

covers the second sphere n times (including the orientation), as the first sphere is scanned

once: θ = 0→ π, φ = 0→ 2π.

Example: π3(S2) = Z (Hopf map)

The point of the base S3 can be parametrized by

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 (6.47)

or

|z0|2 + |z1|2 = 1 , z0 = x1 + ix2 , z1 = x3 + ix4 , (6.48)

whereas S2 has the coordinates (ξ1, ξ2, ξ3),

ξ2
1 + ξ2

2 + ξ2
3 = 1 . (6.49)

A nontrivial Hopf map is

ξ1 = 2 Re z0(z1)∗ = 2(x1x3 + x2x4) ; ξ2 = 2 Im z0(z1)∗ = 2(x2x3 − x1x4) ;

ξ3 = |z0|2 − |z1|2 = (x1)2 + (x2)2 − (x3)2 − (x4)2 . (6.50)

One has, indeed,

ξ2
1 + ξ2

2 + ξ2
3 = (|z0|2 + |z1|2)2 = 1 . (6.51)

Examples:

π2(CP n) = Z , πj(CP
n) = πj(S

2n+1) , j > 2 ; (6.52)

π2n+1(CP n) = Z . (6.53)
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6.4.1 Some general results

πj(M) is commutative for j > 1.

πi(M) = 0 for any contractible M .

π1(M) is commutative if M is a Lie group.

πj(M ×N) = πj(M)× πj(N) , (for a direct product space) .

6.4.2 M = Sn

πi(S
n) = 0 , i < n . (6.54)

πn+k(S
n) for some values of n, k are shown in Table 7 (from Monastyrsky, “Topology

of Gauge Fields and Condensed Matter”).

Table 7:

k
n 2 3 4 5 6 7

1 Z Z2 Z2 Z2 Z2 Z2

2 Z2 Z2 Z2 Z2 Z2 Z2

3 Z2 Z12 Z⊕Z12 Z24 Z24 Z24

4 Z12 Z2 Z2 ⊕ Z2 Z2 0 0
5 Z2 Z2 Z2 ⊕ Z2 Z2 Z 0
6 Z2 Z3 Z2 ⊕ Z24 Z2 Z2 Z2

7 Z3 Z15 Z15 Z30 Z60 Z120

Some Πn+k(S
n), with n > k + 1 is shown in Table 8 [6]

Table 8:

k Πn+k(S
n) k Πn+k(S

n)

0 Z 8 Z2 ⊕ Z2

1 Z2 9 Z2 ⊕ Z2 ⊕ Z2

2 Z2 10 Z2

3 Z24 11 Z504

4 0 12 0
5 0 13 Z3

6 Z2 14 Z2 ⊕ Z2

7 Z240 15 Z480 ⊕ Z2
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6.4.3 M = a Lie group

πk(M) for some Lie groups are shown in Table 9 (taken from “Current Algebra and Anoma-

lies”, S.B. Treiman, R. Jackiw, B. Zumino and E. Witten). Also, a random collection of

interesting results is given below. These remarkable results show how the global properties

of different Lie groups are characterized and described by the higher homotopy groups.

These homotopy-group related results play exceedingly important roles in the understand-

ing of dynamics of Abelian and nonAbelian gauge theories. Physics of solitons and related

objects such as instantons are the central players for uncovering the nonperturbative dy-

namics of these theories, believed to describe the real world of fundamental interactions

and condensed matters.

Table 9: )

k
M U(N) O(N) Sp(N)

N > k
2

N > k + 1 N > k−2
4

0 0 Z2 0
1 Z Z2 0
2 0 0 0
3 Z Z Z

4 0 0 Z2

5 Z 0 Z2

6 0 0 0
7 Z Z Z

8 0 Z2 0
period∗ 2 8 8

πi(U(N)) = πi(S
1)⊕ πi(SU(N)) . (6.55)

π4(SU(3)) = 0, π5(SU(3)) = Z . (6.56)

πi(SO(3)) =


Z2 i = 1 ,

0 i = 2 ,

Z i = 3 .

(6.57)

πi(U(1)) = πi(SO(2)) =

{
Z if i = 1 ;

0 if i > 1 .
(6.58)

πi(SO(4)) = πi(SO(3))⊕ πi(S3) =


Z2 i = 1 ,

0 i = 2 ,

Z⊕ Z i = 3 .

(6.59)

46



Part III

Representation theory

The representation theory is at the heart of the group theory. The specific characters of

different groups and algebras are encoded in the properties of the representation matrices,

and in various beautiful theorems governing them. The results of the representation theory

severely restrict possible ways symmetries are realized in physics.

7 Definition

As already anticipated, the map from a group G to the matrices acting on an N dimensional

vector space (called representation space),

G −→ R = {MN×N , V } ; (7.1)

g ∈ G −→M(g) , (7.2)

such that the group multiplication rules are respected,

g1 ◦ g2 −→M(g1 ◦ g2) = M(g1)M(g2) , (7.3)

is called a representation

Example

In the case of the permutation group S3, mentioned in Section 1.3, a representation is

M(e) = 13×3 , M(12) =

 0 1 0

1 0 0

0 0 1

 , M(23) =

 1 0 0

0 0 1

0 1 0

 ,

M(31) =

 0 0 1

0 1 0

1 0 0

 , M(123) =

 0 0 1

1 0 0

0 1 0

 , M(321) =

 0 1 0

0 0 1

1 0 0

 . (7.4)

The multiplication rules for S3 are indeed respected, M(12)M(23) = M(123), etc.
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7.1 Equivalent representations

Consider two representations R = {M,V } and R̃ = {M̃, Ṽ } of a group G, with the vector

spaces V and Ṽ having the same dimension. If there exists a regular matrix, S, such that

SM(g)S−1 = M̃(g), ∀g ∈ G , (7.5)

then the two representations are said to be equivalent,

R ∼ R̃ . (7.6)

7.2 Direct-product representations

Given two representations, R = {M,V } and R̃ = {M̃, Ṽ } of a group G, their direct

product,

R⊗ R̃ = {M ⊗ M̃, V ⊕ Ṽ } (7.7)

clearly is another representation. This is a very general statement: the dimensions of

the two representations are arbitrary, and R and R̃ may be reducible or irreducible (see

below). In general, however, when R and R̃ are two nontrivial irreducible representations,

their direct product R⊗ R̃ will not be irreducible.

8 Reducible and irreducible representations

Let R = {M,V } be a representation of a group G,

∀g ∈ G −→M(g) . (8.1)

Let U be a subspace of V

U ⊂ V . (8.2)

If

∀g ∈ G , M(g)U ⊂ U , (8.3)

and

U 6= ∅, U 6= V , (8.4)

that is, if there is a nontrivial invariant subspace, then the representation is reducible. If

the condition (8.3) implies

U = ∅ or U ≡ V , (8.5)

then R is irreducible.
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If

V = V1 ⊕ V2 ⊕ . . .⊕ Vn (8.6)

such that

M(g) ∼


M1(g)

M2(g)
. . .

Mn(g)

 , ∀g (8.7)

such that each {Mi, Vi} is irreducible, then {M,V } is said to be completely reducible. In

other words, a completely reducible representation is a representation which is equivalent

to a direct product of representations,

V ∼ V1 ⊕ V2 ⊕ V3 . . . , (8.8)

{M,V } ∼ {M1(g), V1} ⊗ {M2(g), V2} ⊗ {M3(g), V3} ⊗ . . . . (8.9)

Example

An example of a reducible but not completely reducible representation is given by the

group of triangular matrices, (1.18):

T =

{(
a b

0 c

)
, a, b, c ∈ R, a > 0, c > 0

}
, (8.10)

Clearly the subspace

(
∗
0

)
is an invariant subspace, but T cannot be brought to a block-

diagonal form.

9 Unitary representations

Suppose

M † = M−1 , M †M = 1 , ∀g ∈ G . (9.1)

If in V a scalar product between two vectors z, w ∈ V is defined

〈w, z〉 = w† · z , (9.2)

such that

〈w, z〉 g−→ 〈Mw,Mz〉 = 〈w, z〉 , (9.3)

then R = {M,V } is a unitary representation. For a unitary representation matrix M(g)

(M(g))† = M(g−1) . (9.4)
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Here are some theorems.

Theorem: Every representation of a finite group is equivalent to a unitary representation.

The proof is not difficult, but interesting. See [3] .

Theorem: Any representation of a compact group is equivalent to a unitary representation.

Let 〈x|y〉 be an arbitrary Hermitian, semipositive definite scalar product in V :

〈x|y〉 ; 〈x|x〉 ≥ 0 ; 〈x|y〉∗ = 〈y|x〉 , x, y ∈ V . (9.5)

Now if a new scalar product is defined by

(x, y) =

∫
G

dg〈M(g)x|M(g)y〉 (9.6)

Then by using the fact that for a compact group the integration measure is unique and

left and right invariant, it follows that for ∀g0 ∈ G,

(M(g0)x,M(g0)y) =

∫
G

dg〈M(gg0)x|M(gg0)y〉 =

∫
G

dg〈M(g)x|M(g)y〉 = (x, y) : (9.7)

that is M(g0) is a unitary representation with respect to the scalar product, (x, y).

Theorem: A unitary representation of any group is completely reducible.

Let (M,V ) be a unitary representation of a group G. If it is irreducible, it is of course

completely reducible. If not, then there is an invariant subspace U ⊂ V , U 6= 0, 6= V , such

that

M(g)U = U . (9.8)

Let Û ⊂ V be the complement of U ,

Û = {z; 〈z, w〉 = 0 , ∀w ∈ U} , (9.9)

or simply,

〈Û , U〉 = 0 . (9.10)

Then Û is also an invariant subspace of G, as

〈M(g)Û , U〉 = 〈Û ,M(g)†U〉 = 〈Û ,M(g−1)U〉 = 〈Û , U〉 = 0 . (9.11)

If {M, Û} is irreducible, the proof is done. Otherwise, the procedure can be repeated, until

the form (8.7) is reached.

50



9.1 Real and complex representations

Consider a representation

G −→ R = {M,V } , (9.12)

or

g ∈ G −→M(g) ∈ R , M(g1 ◦ g2) = M(g1)M(g2) . (9.13)

If M(g) are complex matrices, then

g ∈ G −→M∗(g) (9.14)

also form a representation. If there exists a fixed matrix S such that

M(g) = SM(g)∗S−1, ∀g ∈ G , (9.15)

then the representatiothe ns R = {M,V } and R∗ = {M∗, V ∗} are equivalent, and the

representation R is said to be real. Otherwise, a representation is complex.

In the case of a Lie group,

M = eiT
aαa (9.16)

the condition for the reality of a representation is that the generators in that representation

satisfy

T a = −ST a ∗S−1 , ∀a (9.17)

with some fixed S. See Subsection 12.4 for examples in the SU(2) group.

Actually there is a finer distinction between a real representation and a pseudoreal

representation. From the reality condition and Hermiticity of T a, it follows that

(T a)T = −S T a S−1 . (9.18)

By taking the transpose

T a = −(S−1)T (T a)T ST . (9.19)

Insert (9.18) now in (9.19) to get

T a = (S−1)T S T a S−1 ST , (9.20)

or

S−1 ST T a = T a S−1 ST , (9.21)

namely, S−1 ST commutes with all T a’s. By Schur’s lemma, see below, it follows that

S−1 ST = λ1 , ... ST = λS . (9.22)
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But as (ST )T = S, one gets

λ2 = 1 , ... ST = ±S : (9.23)

the matrix S is either symmetric or antisymmetric. When S is symmetric, the represen-

tation is called real; when it is antisymmetric, the representation is pseudoreal. Thus the

fundamental representation of SU(2) group is pseudoreal, as S = τ 2 is antisymmetric.

10 Schur’s Lemma

One of the powerful criteria for a representation to be irreducible is Schur’s Lemma.

10.1 Schur’s Lemma I

Let {M,V } and {N,W} be two irreducible representations of the group G, and let a linear

map A : V → W

x ∈ V −→ y = Ax ∈ W , (10.1)

be such that

N(g)A = AM(g) , ∀g ∈ G . (10.2)

Then either

A ≡ 0 , (10.3)

or A : V → W is a one-to-one map (i.e., {M,V } ∼ {N,W}).
The proof goes as follows. Let K be the kernel of the map A:

K = {x ∈ V, Ax = 0} . (10.4)

It forms an invariant subspace, as

AMx = NAx = 0 , ... Mx ∈ K . (10.5)

Since by assumption {M,V } is an irreducible representation, either K = V or K = 0. If

K = V then A = 0 which is one of the possibilities.

If A 6= 0, then K = 0, which means that

Ax = 0→ x = 0 . (10.6)

That is if Ax = Ay, A(x− y) = 0 so x = y. Thus each y ∈ W has a unique inverse in V .

It remains to show that that each point in V has an image in W , that is

AV = W . (10.7)
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To show it, we note that

N(Ax) = AMx , ∀x ∈ V , ∀g ∈ G , (10.8)

thus AV is an invariant subspace of W . As {N,W} is irreducible, it means that either

AV = 0 or AV = W . As A 6= 0, it follows that AV = W , which proves that the map

V → W is one-to-one.

10.2 Schur’s Lemma II

A second theorem, also known as Schur’s lemma, is valid for a complex irreducible repre-

sentation, {M,V }. If {MN , V } is a complex irreducible representation of a group G, and

if there exists a N ×N matrix A such that

MN(g)A = AMN(g); , ∀g, (10.9)

then

A = a1N , a ∈ C . (10.10)

Let a be an eigenvalue of A, so that

det(A− a1) = 0 . (10.11)

B = A − a1 commutes with all M(g), ∀g, so by the first Schur lemma, either B = 0 or

B is a regular one-to-one map from V to V . But detB = 0, so B = 0, that is, A = a1N
(10.10).

Note: Actually the condition (10.10) is not only necessary but also sufficient for the

representation to be irreducible.

10.2.1 A theorem

Any irreducible complex representation of an Abelian group is one-dimensional. Proof: for

an Abelian group

M(g)M(h) = M(h)M(g) , ∀g, h ∈ G , (10.12)

so by Schur’s lemma,

M(g) = a(g)1 , a(g) ∈ C (10.13)

that is, such a representation is one-dimensional.

e.g. For the SO(2) group, the complex irreducible representations are

χm(φ) = eimφ , m = 0,±1,±2, . . . , (10.14)
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i.e., an integer m specifies an irreducible representation of SO(2).

10.3 Orthogonality Theorem

Let R = {M,V } and S = {N,W} be two unitary irreducible representations of a group

G, of order m and n respectively (M and N are, respectively, m×m and n× n matrices).

The theorem states that∫
G

dgMij(g)(N`k(g))∗ =

{
0 , R 6∼ S ,
1
m
δi` δjk , R = S .

(10.15)

Let B be an arbitrary m× n matrix and define

A ≡
∫
G

dgM(g)BN(g−1) . (10.16)

Now for any element g0 ∈ G,

M(g0)A = AN(g0) , ∀g0 (10.17)

holds (the proof is left for the reader as an exercise). Therefore, by Schur’s lemma, either

A ≡ 0 (if R 6∼ S) or R ∼ S.

If R 6∼ S, by choosing the matrix B

Bjk = 1 , for some (j, k) , Bj′k′ = 0, ∀j′ 6= j ,∀k′ 6= k , (10.18)

one gets (remember N(g−1) = N †(g) for a unitary representation)

Ai` =

∫
G

dgMij(g)(N †k`(g)) =

∫
G

dgMij(g)(N`k(g))∗ = 0 . (10.19)

If R = S, M(g) = N(g), we have A = c1 by Schur’s lemma II. The (i`) element of

(10.16) now gives ∫
G

dgMij(g)Bjk(N`k(g))∗ = δi` c . (10.20)

To determine c, choose B as before, and take the trace of the above, which gives

TrA = mc =

∫
G

dgTr(M(g)BM(g−1)) =

∫
G

dgTrB = TrB = δjk , (10.21)

thus ∫
G

dgMij(g)(M`k(g))∗ =
1

m
δjkδi` (10.22)
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11 Character

The character of a representation R = {M,V } of a group G is defined as

χR(g) ≡ TrM(g) . (11.1)

Due to the properties of the trace the character satisfies:

(1)

χR(g) = χR(h−1gh) ; (11.2)

thus the character depends only on the conjugacy class of the elements: such a

function is known as a class function.

(2) If R = {M,V } ∼ R̃ = {M̃, Ṽ } then

χR(g) = χR̃(g) (11.3)

As the following theorems well illustrate, in a compact group various properties about

the representations, such as the irreducibility of a representation, the way a reducible

representation decomposes into a direct sum of irreducible representations, etc. are all

concisely summarized by the character of the representations.

11.1 Orthogonality theorem

Consider a compact group G and consider two irreducible representations R = {M,V } and

R̃ = {M̃, Ṽ } of G. The characters of the two representations are given by

χR = TrM(g) , χR̃ = Tr M̃(g) . (11.4)

As they are functions of the group, their scalar product can be defined by (3.29):

〈χR̃, χR〉 ≡
∫
G

dg (Tr M̃(g))∗TrM(g) . (11.5)

The theorem states that

〈χR̃, χR〉 =

{
0 if R 6∼ R̃ ,

1 if R ∼ R̃ .
(11.6)

The theorem follows at once from the orthogonality theorem of Subsection 10.3. The proof

is left to the reader.
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11.2 Character and irreducibility of the representation

For a compact group G a necessary and sufficient condition for a representation R to be

irreducible is simply:

〈χR, χR〉 = 1 . (11.7)

That this is necessary has been already proven in (11.6).

In order to show that it is also sufficient, let a generic unitary representation R =

{M,V } be a direct sum of irreducible representations

R = ⊕NiRi , (11.8)

where nonnegative integers Ni ∈ Z+ is the number of times a particular irreducible rep-

resentation appears in the reduction, (8.8), (8.9). Note that this is always possible as a

unitary representation is completely reducible, as has been proven in Section 9. Consider

the norm of the character χR of R, (11.8),

〈χR, χR〉 =
∑
i

N2
i , (11.9)

where the orthonormality of irreducible representations Ri, already proven, has been used.

The only way (11.9) is compatible with (11.7) is that

Ni = 1 , Nj = 0 , j 6= i , (11.10)

for an index i, that is, the representation R is irreducible.

11.3 Criterion for the equivalence of two representations

A necessary and sufficient condition for two representations R and R̃ to be equivalent, is

that

χR = χR̃ . (11.11)

That this is necessary is a straightforward consequence of the definition of the character

and of the equivalence between two representations.

That this is also sufficient can be seen as follows. From (11.11) it follows that

〈χR̃, χR〉 = 〈χR, χR〉 = 1 , 〈χR̃, χR′〉 = 〈χR, χR′〉 = 0 , (11.12)

for ∀R′ 6∼ R. Assuming that R̃ has the generic form

R̃ = ⊕NiRi , (11.13)
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(11.12) gives

NR = 1 , NR′ = 0 . (11.14)

Thus

R̃ ∼ R . (11.15)

11.4 Completeness

Consider a generic unitary representation of the form, (11.8). It follows from a property

of the trace on a matrix of block diagonal form, (8.7), that

χR(g) =
∑
i

Ni χRi(g) . (11.16)

The orthonormality relation (11.6) gives then

〈χR, χRi〉 =

∫
G

dg χR(g)∗χRi(g) = Ni . (11.17)

By resubstituting this into (11.16), one gets

χR(g) =

∫
G

dg′ χR(g′)
∑
i

χRi(g
′)∗χRi(g) , (11.18)

for any g. Consistency then requires the completeness relation∑
i

χRi(g
′)χRi(g)∗ = δ(g′ − g) , (11.19)

where the delta function in the group parameter space is appropriately defined, such that

δ(g′ − g) = 0 , g′ 6= g ,

∫
G

dg′ δ(g′ − g) = 1 . (11.20)

For instance, for the S3 parametrization of the SU(2) group, (3.19), (3.20), the delta

function in the group is given by

δ(g′ − g) ≡ 2π2

sin2 θ1 sin θ2

δ(θ′1 − θ1)δ(θ′2 − θ2)δ(θ′3 − θ3) . (11.21)

For an Euler-angle representation of SO(3) group elements, (3.21), one has

δ(g′ − g) ≡ 8π2

sin θ
δ(θ′ − θ)δ(φ′ − φ)δ(ψ′ − ψ) . (11.22)

All the results of the Representation theory, Section 7 ∼ Section 11, concerning compact
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groups, apply to finite groups, where the invariant group integration is replaced by the sum

over the group elements, g`, ∫
G

dg →
∑
`

. (11.23)

For some characteristic features of the finite groups, see [3].
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Part IV

Familiar Lie groups in physics and

their representations

We discuss now the groups frequently used in physics, taking advantage of the artilleries

so far developed. The SU(2) group, which plays the central role in the theory of angular

momentum and of isospin in quantum mechanics, as well as in the gauge theory of the

fundamental interactions, is studied in detail. The su(2) algebra furthermore constitutes

the building block for all other semi-simple Lie algebras, as will be seen in later sections.

Other useful groups treated here, not as in details as for SU(2), are SU(3), SU(N), SO(4),

E2, Lorentz and Poincaré groups.

12 SU(2) Group

The SU(2) group is generated by the generators J1, J2, J3 as

g = eiα
aJa , (12.1)

The algebra su(2) is

[Ji, Jj] = iεijkJk , (12.2)

or

[J1, J2] = iJ3 ; [J2, J3] = iJ1 ; [J3, J1] = iJ2 . (12.3)

The Casimir operator is given by

J2 ≡ J2
1 + J2

2 + J2
3 (12.4)

which commutes with all the generators,

[J2, Ji] = 0 , i = 1, 2, 3, (12.5)

as can be explicitly verified easily. J2 commutes with any representation matrix

[J2,M ] = 0 , M = eiJ
aαa (12.6)

hence by Schur’s lemma is a constant within an irreducible representation,

J2 = c1 . (12.7)
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The constant c characterizes each irreducible representation of SU(2).

In the context of quantum mechanics, (12.2) is nothing but the commutation relations

among the three components of the angular momentum operators 5 (or of the isospin

operators) and the constant c corresponds to the value 6 of the square of the angular

momentum (isospin) operators in that representation.

Below we are going to construct all the irreducible representations of the SU(2) group

explicitly.

Isospin

Before starting the analysis, let us remark that the SU(2) group manifests itself in

nature in the form of ”isospin” symmetry of the nuclear forces (in fact, of the strong

interactions). Historically it appeared first in the form of phenomenological observation of

(i) Charge symmetry, namely

Vpp = Vnn , (12.8)

i.e., that the nuclear forces between two protons are the same as those between two

neutrons; then

(ii) Charge indendence,

Vpp = Vnn = Vpn , (12.9)

i.e., that the forces between a proton and a neutron is also the same as those between

the same particles, and finally as

(iii) Isospin symmetry, i.e., the nuclear forces are invariant under a continuous transfor-

mations (
p

n

)
→ U

(
p

n

)
(12.10)

where U is an SU(2) matrix.

The idea which came out of these development is that the proton and neutron are two

different quantum isospin ”states” of the same particle, called the nucleon 7. Indeed mp '
mn ' 940 MeV/c2. See more about the isospin-invariant form of the nucleon interactions

later.

5More precisely, of the angular momentum operators written in the unit of ~, the Planck constant.
6More precisely, the eigenvalue.
7If the isospin symmetry were exact, the proton and neutron would have to be considered as just

two quantum states of a single particle, the nucleon. Actually, the small mass difference (mp ' 938.27,
mn ' 939.57), and the electromagnetic interactions (eP = 1, en = 0) break explicitly the SU(2) symmetry,
and this makes the distinction of the two particles unambiguous.
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12.1 The fundamental and adjoint representations

The elementary (fundamental) representation of SU(2) group is the action of 2× 2 special

unitary matrices U acting on a complex two component vectors,(
z1

z2

)
→ U

(
z1

z2

)
. (12.11)

In this representation the generators take the form of the Pauli matrices, (4.23),

ta =
1

2
τa ,

where

τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
, (12.12)

known as the Pauli matrices. A useful identity for writing a generic finite element of SU(2)

in terms of three real parameters b = (b1, b2, b3) is

U = ei
τ
2
·b = cos

b

2
+ i

τ · b
b

sin
b

2
=

(
cos b

2
+ i b3

b
sin b

2
i b1−ib2

b
sin b

2

i b1+ib2
b

sin b
2

cos b
2
− i b3

b
sin b

2

)
, b = |b| .

(12.13)

The adjoint representation has the generators

(Ta)bc ≡ if bac = iεbac , a, b, c = 1, 2, 3. (12.14)

The representation space is three dimensional. Using the example of isospin, the three

kinds of pions,

π+ =
π1 − iπ2√

2
, π− =

π1 + iπ2√
2

, π0 = π3 , (12.15)

can be regarded as the three basis states (vectors) of the adjoint (triplet) representation,

transforming as  π1

π2

π3

 −→
 π

′ 1

π
′ 2

π
′ 3

 = U

 π1

π2

π3

 , U = eiα
aTa . (12.16)

A very useful way to express this transformation law is to write the pion state as

πaτa

2
, (12.17)

by using a 2× 2 matrices of the fundamental representation, and to consider the transfor-

61



mation law
πaτa

2
−→ π

′ aτa

2
= U

πaτa

2
U−1 , U = eiα

aτa/2 . (12.18)

It is left as an exercise to prove that (12.16) and (12.18) indeed yield the identical trans-

formation law for πa’s.

As a little application one may now write an isospin-invariant pion-nucleon interaction

vertices as

VY = gY (p̄, n̄)
πaτa

2

(
p

n

)
, (12.19)

(known as the Yukawa interaction) which is manifestly invariant under any SU(2) trans-

formation in view of (12.10) and (12.18). Writing explicitly,

VY = gY

[
(p̄p− n̄n)π0 +

√
2 p̄nπ+ +

√
2 n̄pπ−

]
. (12.20)

12.2 Construction of the irreducible representations

A useful tool is that of the raising and lowering operators 8

J+ ≡ J1 + iJ2 , J− ≡ J1 − iJ2 , (12.21)

in terms of which the su(2) algebra can be written as

[J3, J+] = J+ , [J3, J−] = −J− , [J+, J−] = 2J3 . (12.22)

Also,

[J2, J±] = [J2, J3] = 0 . (12.23)

Also very useful below are the two expressions of J2, in terms of J±:

J2 = J+J− + J2
3 − J3

= J−J+ + J2
3 + J3 (12.24)

which can be proven easily.

The starting point of the analysis is that in a given representation, characterized by

the Casimir

J2 = c1 , (12.25)

where the unit matrix has the dimension depending on the particular representation, there

8The details of these constructions can be found in many quantum mechanics textbooks, see e.g., [10].
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will be various eigenvalues of the generator J3, m:9

J3|c,m〉 = m|c,m〉 , J2|c,m〉 = c |c,m〉 , 〈c,m|c,m〉 = 1 . (12.27)

The possible values taken by c and m in a given representation will be determined below.

As we are interested in a finite representation, i.e., with a representation space of finite

dimension, there will be the maximum value of m,

Max{m}c = j , (12.28)

(def. of j) within the representation. Thus j depends on c (see below). The ”highest”

state |c,m〉 then satisfies 10

J3|c, j〉 = j|c, j〉 , (12.29)

Now consider various states which can be obtained by applying J+ or J− to a state

|c,m〉 in the representation under consideration. One finds

J3(J+ |c,m〉) = (J+J3 + J+)|c,m〉 = (m+ 1)(J+ |c,m〉) ; (12.30)

J3(J− |c,m〉) = (J−J3 − J−)|c,m〉 = (m− 1)(J− |c,m〉) ; (12.31)

where use was made of the algebras (12.22). This means that J+ |c,m〉 and J− |c,m〉 are

eigenstates of J3, with eigenvalue m± 1, unless J+ or J− annihilates it. Does this happen?

For instance, consider the highest state, |c, j〉. By hypothesis there are no other states with

higher value of J3 in this representation, so it must be that

J+|c, j〉 = 0 , (12.32)

for otherwise it would mean that there is another state with the eigenvalue, j + 1: a

contradiction.

Let us apply the second of (12.24) as

c = 〈c, j|J2|c, j〉 = 〈c, j|J−J+ + J2
3 + J3|c, j〉 = j2 + j , (12.33)

9A more familiar notation from the matrix theory would be to write

J3 v
(m) = mv(m) , (v(m))†v(m) = 1 , (12.26)

with v(m) a column vector, and m is the associated eigenvalue. We adopt the notation which is more
commonly used in quantum mechanics. Indeed the content of the present section covers good part of the
theory of angular momentum found in any standard textbook of quantum mechanics. See e.g. [10].

10Here we use the term ”state” in the sense of the common eigenvectors of the matrices J2 and J3. Even
though in the application in quantum mechanics, these objects acquire automatically the physical meaning
of angular momentum ”quantum states”, this fact does not concern us here: no knowledge of quantum
mechanics is required to follow this section.
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thus

c = j(j + 1) . (12.34)

Namely we have proven that the Casimir operator J2 = J2
1 + J2

2 + J2
3 in the representation

in which the highest J3 eigenvalue is j takes the value j(j + 1).

Applying J− on |c, j〉 would in general not give zero, but another eigenvector,

J−|c, j〉 ∝ |c, j − 1〉 . (12.35)

By applying repeatedly J−, one finds a tower of states,

|c, j〉, |c, j − 1〉, |c, j − 2〉, . . . (12.36)

with J3 eigenvalues, j, j−1, j−2, . . ., respectively. Note that as J− commutes with J2, the

eigenvalue with respect to J2 is unchanged: they are all eigenvectors of J2 with eigenvalue,

c = j(j + 1).

How many such states (12.36) are there? As our representation is finite, there must be

the lowest vector, ”the minimum state” |c, j − n〉 such that

J− |c, j − n〉 = 0 , (12.37)

for otherwise there would be a vector with the eigenvalue of J3 even smaller, which is a

contradiction. (12.37) however implies that n and j are related. Indeed by using this time

the first of (12.24) one finds

c = j(j+ 1) = 〈c, j−n|J2|c, j−n〉 = 〈c, j−n|J+J−+J2
3 −J3|c, j−n〉 = (j−n)2− (j−n) ,

(12.38)

where (12.37) has been used. Solving this equation one finds that

j =
n

2
. (12.39)

As n is a nonnegative integer, this means that the possible values of j in various represen-

tations are limited to

j = 0 ,
1

2
, 1 ,

3

2
, 2 ,

5

2
, . . . : (12.40)

either a nonnegative integer or a half-integer.11

Now that we found the relation (12.34) between the Casimir J2 = c and the highest

j = Max(J3) belonging to that representation, it is more convenient to use the notation

11In quantum mechanics this corresponds to the universal quantization rule of the angular momentum,
of the spin, or of the isospin, rigorously obeyed in Nature. In that context, another fundamental result is
that the orbital angular momenta are quantized by integer values only: this reflects [10] the property of
the space we live in: π1(R3) = 1.
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j = MaxJ3 0 1/2 1 3/2 2 . . . j . . .
Casimir J2 0 3/4 2 15/4 6 . . . j(j + 1) . . .
Dimension 1 2 3 4 5 . . . 2j + 1 . . .

Table 10: Irreducible representations of SU(2) group, the Casimir operator and the dimen-
sion of the representations

to indicate each eigenstate of (J2, J3) as |j, m〉 rather than as |c, m〉. The base vectors

belonging to the j-representation are thus

|j, m〉 , m = j, j − 1, . . . ,−j . (12.41)

Applying now the formulas (12.24) again, one finds

j(j + 1) = 〈j, m|J2|j, m〉 = 〈j, m|J+J− + J2
3 − J3|j, m〉

= |〈j, m− 1|J−|j, m〉|2 +m2 −m , (12.42)

thus

〈j, m− 1|J−|j, m〉 =
√

(j +m)(j −m+ 1) , (12.43)

and similarly 12

〈j, m+ 1|J+|j, m〉 =
√

(j −m)(j +m+ 1) . (12.44)

Recalling J± = J1 ± iJ2, these relations, together with

〈j, m′ |J3|j, m〉 = δm′mm (12.45)

determine all the matrix elements of the generators J1, J2, J3 in any given representation

j.

For j = 1
2
, these reproduce the familiar expressions

ta =
1

2
τa , τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
, (12.46)

in terms of the Pauli matrices. For j = 1, one finds

t1 =
1√
2

 0 1 0

1 0 1

0 1 0

 , t2 =
1√
2

 0 −i 0

i 0 −i
0 i 0

 , t3 =

 1 0 0

0 0 0

0 0 −1

 . (12.47)

12A careful reader will have noted that the phase factor was taken to be 1 in taking the square root in
(12.43) and (12.44). Such a choice fixes conventionally the relative phases of the states |j,m〉 within the
same multiplet. See more about this later, in connection to the Clebsch-Gordan coefficients.

65



12.3 Direct product representations and their decomposition in

the direct sum of irreducible representation

Without going into details, the direct products of two SU(2) representations decompose

as a direct sum of irreducible representations, as 13

j1 ⊗ j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ j1 + j2 − 2⊕ . . . |j1 − j2| . (12.48)

For example, the product of two fundamental representations decompose as

1/2⊗ 1/2 = 1⊕ 0 , (12.49)

the 2× 2 = 4 states of the direct product decompose as the sum of a triplet and a singlet.

By using the notation

|↑〉 = |1
2
, 1

2
〉 , |↓〉 = |1

2
,−1

2
〉 , (12.50)

representing |p〉, |n〉 of the isospin doublet (or the spin up or down states of a spin 1/2

particle), the decomposition rule (12.49) can be written explicitly,

|1, 1〉 = |↑〉|↑〉 , |1, 0〉 =
1√
2

(|↑〉|↓〉+ |↓〉|↑〉) , |1,−1〉 = |↓〉|↓〉 , (12.51)

for the triplet, and

|0, 0〉 =
1√
2

(|↑〉|↓〉 − |↓〉|↑〉) . (12.52)

for the singlet. The various coefficients appearing in (12.51), (12.52), are examples of the

Clebsh-Gordan coefficients [10]. Each state in the direct-product basis on the left hand

side of (12.48) can be expressed in terms of the states appearing on the right hand side

(i.e., states with various total J), as

|j1,m1; j2,m2〉 =
∑
J,M

|j1, j2, J,M〉〈j1, j2, J,M |j1,m1; j2,m2〉 . (12.53)

The inverse relation reads

|j1, j2, J,M〉 =
∑
m1,m2

|j1,m1; j2,m2〉〈j1,m1; j2,m2|j1, j2, J,M〉 . (12.54)

or dropping somewhat redundant j1,2

|J,M〉 =
∑
m1,m2

|j1,m1; j2,m2〉〈j1,m1; j2,m2|J,M〉 . (12.55)

13In the context of quantum mechanics this is known as the composition-decomposition rule of angular
momenta. See [10] for details.
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The expansion coefficients

〈j1,m1; j2,m2|j1, j2, J,M〉 = 〈j1, j2, J,M |j1,m1; j2,m2〉 (12.56)

are known as Clebsch-Gordan (or CG-) coefficients.

As one can easily glimpse from an explicit construction of the composition-decomposition,

(12.48), see [10], it is necessary to fix certain phase convention among the states |j1,m1〉, |j2,m2〉
and |J,M〉 appering in (12.48). Such a convention must be such that all of the CG coef-

ficients be unambiguously and exhaustively determined. A well-known phase convention

(usually used) is known as the Condon-Shortley convention. It consists of the following

three rules 14:

(i) The highest states in the two bases are identified with coefficient 1.

(ii) All matrix elements of J1−, J2−, J− are real and semi-positive definite 15.

(iii) The matrix elements

〈j1, j2, J,M |J1 z|j1, j2, J ± 1,M〉 (12.57)

are all real and semi-positive definite.

In Mathematica, the command to get a CG coefficient is

ClebschGordan[{j1,m1}, {j2,m2}, {J,M}] . (12.58)

12.4 Irreducible representations of su(2) are (pseudo-)real

An interesting (and important) aspect of the SU(2) group is that its irreducible represen-

tations are all real (or pseudo real, see below). As any SU(N) generators are Hermitian,

the reality of the representation

M(g) ∼M(g)∗ (12.59)

requires

−(T a)∗ = S T a S−1 , ∀a . (12.60)

for some fixed matrix S. In the case of SU(2), the generators in the fundamental repre-

sentation are given by the Pauli matrices,

T 1 =
τ 1

2
, T 2 =

τ 2

2
, T 3 =

τ 3

2
. (12.61)

By choosing

S = τ 2 , S−1 = τ 2 , (12.62)

14The demonstration is found in A.R. Edmonds, ”Angular Momentum in Quantum Mechanics”.
15This was used in (12.43), (12.44).

67



and by using the properties of the Pauli matrices, it is easy to prove (left as an exercise)

that

−τ 2(τa)∗τ 2 = τa , a = 1, 2, 3 . (12.63)

Thus the representation 2∗ and 2 are equivalent,

2∗ ∼ 2 , (12.64)

and consequently, other irreducible representations which can be constructed from the

decompositions of the direct products of 2 representations, are all real.

Actually there is a finer distinction between a real representation and a pseudoreal

representation. From the reality condition it follows that

(T a)T = −S T a S−1 . (12.65)

By taking the transpose

T a = −(S−1)T (T a)T ST . (12.66)

Insert (9.18) now in (9.19) to get

T a = (S−1)T S T a S−1 ST , (12.67)

or

S−1 ST T a = T a S−1 ST , (12.68)

namely, S−1 ST commutes with all T a’s. By Schur’s lemma, it follows that

S−1 ST = λ1 , ... ST = λS . (12.69)

But as (ST )T = S, one gets

λ2 = 1 , ... ST = ±S : (12.70)

the matrix S is either symmetric or antisymmetric. When S is symmetric, the represen-

tation is called real; when it is antisymmetric, the representation is pseudoreal. Thus the

fundamental representation of SU(2) group is pseudoreal, as S = τ 2 is antisymmetric.
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abc 123 147 156 246 257 345 367 458 678

fabc 1 1
2

1
2

1
2

−1
2
−1

2
−1

2
−
√

3
2

√
3

2

Table 11:

13 SU(3) Group, Quark Model and Young tableaux

13.1 su(3) algebra and weight vectors

The algebra of the SU(3) group are given by the following eight generators

T 1 =
1

2

 0 1 0

1 0 0

0 0 0

 , T 2 =
1

2

 0 −i 0

i 0 0

0 0 0

 , T 3 =
1

2

 1 0 0

0 −1 0

0 0 0

 , (13.1)

T 4 =
1

2

 0 0 1

0 0 0

1 0 0

 , T 5 =
1

2

 0 0 i

0 0 0

−i 0 0

 , T 6 =
1

2

 0 0 0

0 0 1

0 1 0

 , (13.2)

T 7 =
1

2

 0 0 0

0 0 −i
0 i 0

 , T 8 =
1

2
√

3

 1 0 0

0 1 0

0 0 −2

 (13.3)

known as Gell-Mann’s matrices. The structure constants fabc in

[T a, T b] = ifabcT c (13.4)

turn out to be completely antisymmetric under exchanges of the indices, a, b, c. The Killing

form is given simply by gab = −3
2
δab. The nonvanishing structure constants are listed in

Table 11.

Let us define

T± = T 1 ± iT 2 , U± = T 6 ± iT 7 , V± = T 4 ∓ iT 5 , (13.5)

U3 = (
√

3T 8 − T 3)/2 V 3 = (
√

3T 8 + T 3)/2 (13.6)

In terms of these raising and lowering operators the su(3) algebra can be written as

[T 3, T±] = ±T± , [T+, T−] = 2T 3 , (13.7)

[U3, U±] = ±U± , [U+, U−] = 2U3 , (13.8)

[V 3, V±] = ±V± , [V+, V−] = 2V 3 , (13.9)
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and

[T 8, T±] = 0 , [T 3, U±] = ∓1

2
U± , [T 3, V±] = ±1

2
V± , (13.10)

[T 8, U±] = ±
√

3

2
U± , [T 8, V±] = ±

√
3

2
V± . (13.11)

There are two diagonal generators, T 3 and T 8. As they commute, there are vectors

which are simultaneous eigenvectors of T 3 and T 8. In the representation where T 3 and T 8

are diagonal, such vectors (of the minimum number of components) are simply:

|q1〉 =

 1

0

0

 , |q2〉 =

 0

1

0

 , |q3〉 =

 0

0

1

 , (13.12)

which form together the basis of

3 =

 q1

q2

q3

 . (13.13)

Indeed,

T 3|q1〉 =
1

2
|q1〉 , T 3|q2〉 = −1

2
|q2〉 , T 3|q3〉 = 0 , (13.14)

T 8|q1〉 =
1

2
√

3
|q1〉 , T 8|q2〉 =

1

2
√

3
|q2〉 , T 8|q3〉 = − 1√

3
|q3〉 . (13.15)

A very useful way to interpret these formulas is to represent the vectors |q1〉, |q2〉, and

|q3〉, by a kind of vectors in a real two-dimensional space by using their eigenvalues with

respect to T 3, T 8 as their components, namely, as

|q1〉 → µ1 = (1
2
, 1

2
√

3
), |q2〉 → µ2 = (−1

2
, 1

2
√

3
), |q3〉 → µ3 = (0,− 1√

3
). (13.16)

The vectors expressed this way are known as the weight vectors. Eq. (13.16) are the weight

vectors of 3. They form the vertices of a regular triangle in the ”weight diagram”, see

Fig. 6.

Analogously, the weight vectors of 3∗ (the representation given by the complex conjugate

triplet vectors (q∗1, q
∗
2, q
∗
3)) are simply

|q∗1〉 → −µ1 = (−1
2
,− 1

2
√

3
), |q∗2〉 → −µ2 = (1

2
,− 1

2
√

3
), |q∗3〉 → −µ3 = (0, 1√

3
).

(13.17)

(Exercise: prove that the weight vectors of a complex conjugate representation r∗ are

simply minus of the weight vectors of r.) The weight diagrams for 3∗ and 8 are also shown

in Fg. 6.

As will be discussed in Section 18, the weight vectors µ play an important role in the

formal development of the Lie algebras. In order to avoid confusion, it must be kept in
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3*

Figure 6: The weight vectors of 3, 3∗ and 8 of the SU(3) group. The weight vectors are
the lines connecting the center to the vertices. In 8 there are two null weight vectors.
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mind however that they just label - but they are not themselves - the basis states (or

vectors) in the vector space of a given representation.

The irreducible representations of the SU(3) group, the decomposition of the direct

product of two irreps r1 and r2, etc. are best worked out by using the Young tableaux

discussed in the following Subsection. Some of the examples are

3⊗ 3 = 6⊕ 3∗ , 3⊗ 3∗ = 1⊕ 8 ; 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 , (13.18)

8⊗ 8 = 27⊕ 10⊕ 10∗ ⊕ 8⊕ 8⊕ 1 , 10⊗ 8 = 35⊕ 27⊕ 10⊕ 8 . (13.19)

13.2 Young tableaux

Consider the set of products of N objects,16 each of which can take one of p ”values”, a1,

a2, ... ap,

ψ = ψa1(1)ψa2(2) . . . ψa1(N) . (13.20)

We ask what are the possible symmetry types of these ψ under the permutation of the

objects. Indeed, the answer, given below in terms of the Young tableaux, amounts to the

irreducible representations of the permutation group SN considered earlier.

(1) For N = 1 there is only one type, ψa, a = 1, 2, . . . , p. This is represented by a box

(13.21)

(2) For N = 2 one can construct symmetric combinations (there are p(p+ 1)/2 of them)

ψS = (ψa1(1)ψa2(2) + ψa2(1)ψa1(2))/
√

2 , (13.22)

or antisymmetric ones (there are p(p− 1)/2 of them)

ψA = (ψa1(1)ψa2(2)− ψa2(1)ψa1(2))/
√

2 . (13.23)

They are represented by the Young tableaux

, (13.24)

respectively.

16Each of ψai(J) can be regarded simply as the color of the Jth box, the orientation of the J-th vector,
or the wave function of the J-th particle, etc. These details are unimportant for the considerations here.
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(3) For N = 3 there are in general three symmetry types, represented by

totally symmetric

mixed symmetry

totally antisymmetric (13.25)

(4) The most general Young tableau looks like

(13.26)

with the number of the boxes in the rows, N1, N2, ... , Nr, such that

Ni ≥ Ni−1 , (13.27)

N1 +N2 + . . . Nr = N . (13.28)

(5) Given the maximum number of values, p, each box can take, it is clear that

r ≤ p , (13.29)

as more than N = p objects cannot by anisymmetrized.

(6) For N = p, there is exactly one combination which is totally antisymmetric,

εa1,a2,...apψa1(1)ψa2(2) . . . ψap(p) = (13.30)

(13.31)

(with height p) which is necessarily a singlet.

(7) For SU(N) group, each Young tableau corresponds to an irreducible representation.

This is not so for, e.g., SO(N) group. For SO(3) group, for instance, the Young
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tableau

(13.32)

which are the symmetric product of two vectors, represents a direct sum of a rank

two tensor 5 and a scalar 1.

(8) Applying these tools to the SU(2) group, a box represents the fundamental represen-

tation, 2. A general irreducible representation of SU(2) is represented by a Young

tableau of the type

, (13.33)

where the number of the horizontal boxes are n1 and n2. As the height 2 columns

represent singlets, (13.33) representa the irreducible representation j (J2 = j(j+ 1)),

where

j =
n1 − n2

2
. (13.34)

(9) For SU(3), a box represents 3, a height 3 column represents a singlet.

(10) The multiplicity (the dimension) of an irreducible representation corresponding to a

Young tableau can be read off from the tableau. Denoting the differences between

the length of the successive rows,

p1 = N1 −N2; p2 = N2 −N3; . . . , (13.35)

the multiplicity (the dimension) of the SU(3) representations is given by

N(p1, p2) =
1

2
(p1 + 1)(p1 + p2 + 2)(p2 + 1) ; (13.36)

that of the irreps of SU(4) is

N(p1, p2, p3) =
1

2! 3!
(p1 + 1)(p1 + p2 + 2)(p1 + p2 + p3 + 3)(p2 + 1)(p2 + p3 + 2)(p3 + 1) ;

(13.37)

etc.

13.3 From the Quark model to the contemporary theory of fun-

damental interactions

In the quark model (Gell-Mann, Zweig, Neeman) the hadrons are described as M = q̄q

(mesons) or B = qqq (baryons) bound states. The lowest pseudoscalar mesons and baryons

are assigned to 8. The quarks and the light pseudoscalar mesons are arranged as in Fig. 7.

The lightest baryons and the first excited baryons (resonances) are assigned to an 8 and

to an 10. See Fig. 8. One of the first important results in understanding the systematics
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Figure 7: The quarks are in the fundamental 3 and in the antifundamental 3∗. The known
lightest pseudoscalar mesons are in an 8.
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Figure 8: The known baryons and excited baryons (resonances) are in the octet 8 and in a
decouplet 10 representations.

in the quark model was the Nishijima-Gell-Mann-Okubo relation

Q = I3 +
Y

2
= I3 +

B + S

2
, (13.38)

where I3 = T 3 is the third component of the isospin, Y is the hypercharge, related to T 8

by

T 8 =

√
3

2
Y , Y =

1

3

 1 0 0

0 1 0

0 0 −2

 . (13.39)

B is the baryon number, S is the strangeness.

Historically the discovery of the baryon Ω− and the experimental verification of the

quark model has brought an important puzzle. Ω− has the ”flavor” content |sss〉, the spin
3
2

and the orbital angular momentum L = 0 (being the ground state): each of these factors

of the wave function is totally symmetric under the exchanges of a pair of quarks. As the

quarks are fermions, such a state could not exist in Nature according to the principles of

Quantum Mechanics (Fermi-Dirac statistics). This deep puzzle has led to the introduction

(a hypothesis) of an extra quantum number, the color (which come in three varieties) – Han

and Nambu –, with the assumption that the baryon states are completely antisymmetric
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with respect to SU(3)color,

, (13.40)

i.e., they are singlets of SU(3)color.

Another brilliant and fundamental step was to realize that the very extra degrees of

freedom (the color) introduced to solve the statistics puzzle, could be responsible for the

dynamics of quarks, i.e., could explain the forces binding them together to form (color

singlet) baryons and mesons. In 1973, Fritzsch, Leutwyler and Gell-Mann proposed the

theory of Quantum Chromodymanics (QCD), the color SU(3) gauge theory 17 .

Immediately, the property of asymptotic freedom of QCD was discovered by Politzer,

Gross and Wilczek, by studying the renormalization group properties of the theory. In

simple terms, it states that the effective interaction strength becomes weak at shorter

distances. And this explained Feynman’s ”parton” structure of hadrons: existence of some

pointlike constituents inside hadrons, experimentally observed in deep-inelastic (i.e., with

large energy and large momentum transfer) scattering processes.

On the other hand such a property could imply that at large distances the force binding

quarks inside hadron becomes stronger, leading to the idea of quark confinement. Only

color-singlet hadrons (mesons ∼ |q̄q〉 and baryons ∼ |qqq〉) can exist as finite mass ob-

servable states. For instance, the inter-quark force may be described by a linearly rising

potential, as certain features of hadron spectrum suggest. If this is the case, to free a

quark from inside a hadron would require an infinite amount of energy, so that the quarks

are permanently confined inside the hadrons 18. Only recently some new types of color-

singlet hadrons, of the type, ∼ |q̄q̄qq〉, called tetraquark states, have been discovered in the

experiments, Belle, and at LHC.

This brings us to this day: in spite of great efforts dedicated to this problem, and enor-

mous success (both experimental and theoretical) which provided us with countless checks

of the standard model of the fundamental interactions {SUL(2) × U(1)}WS × SU(3)QCD
and which finally led to the discovery of the Higgs particle (2012), a proper understanding

of quark confinement is still an open problem.

17By 1972 the electroweak interactions were known to be described by a nonAbelian (Yang-Mills) type
gauge theory, SU(2)×U(1) Weinberg-Salam theory, which unified the Quantum Electrodynamics and the
weak interactions. It remained to explain the nature of the strong nuclear forces.

18This should be compared with an atom: to liberate a valence electron requires a finite energy, known
as the ionization potential, of the order of eV . To free a nucleon from a nucleus one needs a much bigger
energy, of the order of MeV , roughly 105 − 106 times larger than a typical ionization potential, but still
finite.
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14 SO(4) group and its representations

The orthogonal group SO(4) is the group of rotations in four dimensional Euclidean space.

The basic object is the four component vector, 4,

ai ∼ 4 , (14.1)

rank-two tensors,

aibj ∼ 4⊗ 4 , (14.2)

and so on. The latter can be decomposed into symmetric and antisymmetric parts,

aibj =
aibj + ajbi

2
+
aibj − ajbi

2
, (14.3)

the symmetric part can further be decomposed into the sum of the singlet and the traceless

second rank tensor

aibj + ajbi
2

=
δij
4
akbk +

(
aibj + ajbi

2
− δij

4
akbk

)
. (14.4)

In the elementary representation 4, the generators of SO(4) are rotations in six planes

(Σij)k` = −i
(
δikδ

j
` − δ

j
kδ
i
`

)
. (14.5)

For instance,

Σ12 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , eiθΣ
12

=


cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 , (14.6)

Σ13 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , eiφΣ13

=


cosφ 0 sinφ 0

0 1 0 0

− sinφ 0 sinφ 0

0 0 0 1

 (14.7)

etc. The algebra of SO(4) can be found easily:

[Σij,Σk`] = −i{Σi`δjk − Σj`δik − Σikδj` + Σjkδi`} . (14.8)

Σij = −Σji , ΣT = −ΣT , (14.9)

These appear fairly straightforward generalizations of the group SO(3).

The surprise is that the algebra so(4) actually splits into two commuting factors su(2)×
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su(2). This can be seen by defining

S1 =
1

2
(Σ23 + Σ41) ; S2 =

1

2
(Σ31 + Σ42) ; S3 =

1

2
(Σ12 + Σ43) ; (14.10)

Ŝ1 =
1

2
(Σ23 − Σ41) ; Ŝ2 =

1

2
(Σ31 − Σ42) ; Ŝ3 =

1

2
(Σ12 − Σ43) . (14.11)

It can be readily checked that

[Si, Sj] = iεijk Sk ; [Ŝi, Ŝj] = iεijk Ŝk ; [Si, Ŝj] = 0 , (14.12)

showing

so(4) ∼ su(2)× su(2) . (14.13)

This means that the smallest representation of SO(4) is not the elementary vector repre-

sentation 4, but the spinor representations of two types,

(2, 1) and (1, 2) . (14.14)

whereas the vector 4 transforms as

4 = (2, 2) . (14.15)

The general irreducible representations of SO(4) are classified as

(j1, j2) , j1, j2 = 0, 1
2
, 1, 3

2
, 2, . . . . (14.16)

The Casimir operators of the two su(2) algebras,

S2 , Ŝ2 , (14.17)

have eigenvalues (see Sec. 12.2)

j1(j1 + 1) , j2(j2 + 1) . (14.18)

Eq. (14.13) shows that SO(4) and SU(2)×SU(2) have isomorphic algebras. As groups

however they are different. As in the case of SO(3) and SU(2) groups, each element of

SO(4) group has two inverse images in SU(2) × SU(2): in particular the unit element of

SO(4) has two inverse images,

14 ←− (12,12) , (−12,−12) , (14.19)

thus their relation is

SO(4) ∼ SU(2)× SU(2)/Z2 . (14.20)
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As SU(2) is simply connected, it follows that

π1(SO(4)) = Z2 . (14.21)

SU(2)× SU(2) is the universal covering group of SO(4).

The generators of so(4) algebra in the spinor representations can be constructed ex-

plicitly as follows. Define two-by-two matrices

σµ ≡ (i1, σi) , σ̄µ ≡ (−i1, σi) µ = 4, 1, 2, 3 . (14.22)

and

σµν ≡
σµσ̄ν − σν σ̄µ

4i
, (14.23)

σ̄µν ≡
σ̄µσν − σ̄νσµ

4i
, (14.24)

The so(4) generators in the spinorial representations are given by

Σµν =

(
σµν 0

0 σ̄µν

)
. (14.25)

It is easy to compute

S1 =
1

2
(Σ23 + Σ41) =

(
1
2
σ1 0

0 0

)
; S2 =

(
1
2
σ2 0

0 0

)
; S3 =

(
1
2
σ3 0

0 0

)
; (14.26)

which are the generators of the first SU(2) and

Ŝ1 =
1

2
(Σ23 − Σ41) =

(
0 0

0 1
2
σ1

)
; Ŝ2 =

(
0 0

0 1
2
σ2

)
; Ŝ3 =

(
0 0

0 1
2
σ3

)
; (14.27)

which are the generators of the second SU(2) factor. They trivially commute with each

other. The chirality operator

γ5 ≡
(
σ4σ1σ2σ3 0

0 σ̄4σ̄1σ̄2σ̄3

)
=

(
−1 0

0 1

)
(14.28)

obviously commutes with all the generators of su(2) × su(2). It is a Casimir operator; it

takes the value ∓1 in the spinor representation (1
2
, 0) and (0, 1

2
), respectively.
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15 Euclidean groups, E2

The Euclidean group En is a group of rotations and translations in n-dimensional Euclidean

space, Rn. Their actions on a vector x ∈ Rn are defined by

x→ Rx+ a , (15.1)

where Rn×n ∈ SO(n) and a is a constant vector. They leave the metric δij and

ds = dxiδijdx
j (15.2)

invariant.

Let us study the simplest nontrivial Euclidean group, E2, in some details. It acts on a

two-vector as (
x1

x2

)
→
(
x′1
x′2

)
=

(
x1 cos θ − x2 sin θ + b1

x1 sin θ + x2 cos θ + b2

)
: (15.3)

a rotation followed by a translation. Let g(b, θ) ∈ E2 be a generic element. Clearly the

group product rule is

g(b2, θ2)g(b1, θ1) = g(b3, θ3) , (15.4)

where

θ3 = θ1 + θ2 ; b3 = R(θ2)b1 + b2 . (15.5)

and

R(θ) ≡
(

cos θ − sin θ

sin θ cos θ

)
. (15.6)

The infinitesimal generators corresponding to (15.3) are

P 1 = −i ∂
∂x1

; P 2 = −i ∂
∂x2

; J = −i(x1
∂

∂x2

− x2
∂

∂x1

) . (15.7)

Acting on the basis vectors

x =

(
x1

x2

)
(15.8)

the above (15.7) correctly generate the infinitesimal transformations,

δPx = ib ·P x = b , δθx = iJθ x =

(
θx2

−θx1

)
. (15.9)

The algebra of E2 follows from (15.7) straightforwardly:

[P i, P j] = 0 ; [J, P i] = iεijP j , ε12 = −ε21 = 1 . (15.10)
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The finite transformations are given by

T (b) = e−ib·P ; R(θ) = e−iθJ . (15.11)

The algebra (15.10) shows that P 1,2 form an Abelian invariant subalgebra (ideal). Thus

the algebra of E2 is neither simple nor semi-simple.

The defining rules of E2, (15.4), (15.5), show that a generic element of E2 can be written

in a factorized form

g(b, θ) = T (b)R(θ) = g(b, 0)g(0, θ) . (15.12)

The important property of E2 is that T (b) forms an invariant subgroup of E2. The group is

non semi-simple. Another characteristics of the group E2 is that it is non compact, as the

translation parameters bi can take arbitrarily large values. These characteristics restrain

indeed the properties of representations as will be seen below.

Theorem: T (b) forms a normal subgroup N = T 2. In fact,

e−iθJPk e
iθJ = Pm (R(θ))mk , (15.13)

(the proof of which is left to the reader), so

e−iθJ(P · b) eiθJ = PmR
m
k b

k = P · b′ , b′ = (R(θ)b) . (15.14)

Therefore

e−iθJT (b) eiθJ = T (R(θ)b) . (15.15)

At this point, it is easy to prove it:

g(b, θ)T (a)g(b, θ)−1 = T (b)
[
R(θ)T (a)R(θ)−1

]
T (b)−1

= T (b)T (R(θ)a)T (−b) = T (R(θ)a) ∈ N . (15.16)

Theorem: The coset G/N = E2/T
2 ∼ SO(2).

Let us recall that the right coset associated with an invariant subgroup N ⊂ G is

defined by

Ng1Ng2 = Ng1N(g1)−1g1g2 = NNg1g2 = Ng1g2 . (15.17)

From T 2 = N , g = g(b, θ) = T (b)R(θ), one has

T (a)(T (b1)R(θ1))T (a′)(T (b2)R(θ2)) ∼ TR(θ1)TR(θ2)

∼ TR(θ1)TR(θ1)−1R(θ1)R(θ2) ∼ TR(θ1 + θ2) . (15.18)

Thus E2/T
2 ∼ SO(2).

82



15.1 Unitary representations of E2: the coset construction

By using the coset group it is possible to construct a unitary representation of E2. Define

the unitary ”matrix” U(b, θ) such that

g(b, θ)→ U(b, θ) = eimθ , ∀b , m ∈ Z . (15.19)

Clearly these satisfy the group multiplication rules (15.4), (15.5), and thus U(b, θ) is a

finite, unitary representation of E2: more precisely, it is a finite, irreducible representation

of its coset E2/T
2 ∼ SO(2).

More general unitary representations can be constructed as follows. Define

P± = P1 ± iP2 ; [J, P±] = ±P± . (15.20)

We note also that

P2 = P 2
1 + P 2

2 = P+P− = P−P+ ; (15.21)

[P2, J ] = 0 ; [P2, P±] = 0 . (15.22)

Namely P2 is a Casimir operator, with eigenvalues p2 ≥ 0. As P2 and J commute, their

simultaneous eigenvectors |p,m〉

P2|p,m〉 = p2|p,m〉 J |p,m〉 = m|p,m〉, −∞ < p <∞ , m = 0,±1,±2, . . . ,

(15.23)

may be used as the basis vectors of a representation. Our task is to find the (infinite-

dimensional) matrix representation of generic element g(b, θ) = T (b)R(θ).

We start from observing

P±|p,m〉 = c |p,m± 1〉 . (15.24)

c can be found by

|c|2 = 〈p,m|P∓P±|p,m〉 = 〈p,m|P2|p,m〉 = p2 , (15.25)

so

c = −ip , (15.26)

where the phase factor is chosen for later convenience. That is,

|p,m± 1〉 = ± i
p
P±|p,m〉 . (15.27)

(i) p2 = 0,

P±|0,m〉 = 0 . (15.28)
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Other elements act as

J |0,m〉 = m |0,m〉 , R(θ) |0,m〉 = e−imθ|0,m〉 ; T (b)|0,m〉 = |0,m〉 , (15.29)

so

g(b, θ)⇒ Um(b, θ) = e−imθ . (15.30)

(ii) p2 > 0

The matrix elements of the generators are

〈p,m′|J |p,m〉 = mδm′,m ; (15.31)

〈p,m′|P±|p,m〉 = ∓ip δm′,m±1 . (15.32)

Finite representation matrix is given by

g(b, θ)→ Dp(b, θ)m′m = ei(m
′−m)φJm−m′(p b)e

−imθ , (15.33)

where cosφ = p·b
p b

and Jk(z) is the Bessel function (of the first kind) of order k (see

below, Eq. (15.44)).

The rest of the section is dedicated to the proof of (15.33).

By definition

Dp(b, θ)m′m = 〈p,m′|g(b, θ)|p,m〉 = 〈p,m′|T (b)R(θ))|p,m〉 . (15.34)

Now

R(θ))|p,m〉 = e−iθJ |p,m〉 = e−iθm|p,m〉 , (15.35)

so that

Dp(b, θ)m′m = e−iθm〈p,m′|T (b)|p,m〉 . (15.36)

Let φ be the angle b makes with an arbitrarily fixed x̂ axis:

b = R(φ)b0 , b0 =

(
b

0

)
, (15.37)

then

T (b) = T (R(φ)b0) = e−iφJT (b0)eiφJ (15.38)
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so that

〈p,m′|T (b)|p,m〉 = e−i(m
′−m)φ〈p,m′|T (b0)|p,m〉 = e−i(m

′−m)φ〈p,m′|e−iP1b|p,m〉

= e−i(m
′−m)φ〈p,m′|e−

ib
2

(P++P−)|p,m〉 = e−i(m
′−m)φ

∑
k,`

(−ib
2

)k+`

k!`!
〈p,m′|P k

+P
`
−|p,m〉 .

(15.39)

But

P−|p,m〉 = ip|p,m− 1〉 ; P+|p,m〉 = −ip|p,m+ 1〉 ; (15.40)

so

〈p,m′|T (b0)|p,m〉 =
∑
k,`

(−ib
2

)k+`

k!`!
(ip)`(−ip)k〈p,m′|p,m+ k − `〉

=
∑
k,`

(−)k(pb
2

)k+`

k!`!
δm′−m,k−` . (15.41)

Now in the summation over k and ` the condition k, ` ≥ 0 and the Kronecker delta must

both be taken into account. The solution can be summarized as:

(i) m ≥ m′.

The summation ranges for k, ` are

k = 0, 1, 2, . . . , ` = k +m−m′ ≥ 0 , (15.42)

thus

〈p,m′|T (b0)|p,m〉 =

(
pb

2

)m−m′ ∞∑
k=0

(−)k(pb
2

)2k

k!(k +m−m′)!
= Jm−m′(pb) , (15.43)

where Jν(z) is the Bessel function of the first kind,

Jν(z) ≡
(z

2

)ν ∞∑
n=0

(−)n( z
2
)2n

n! Γ(ν + n+ 1)
. (15.44)

Jν(z) is the solution of Bessel’s equation

d2Zν
dz2

+
1

z

dZν
dz

+ (1− ν2

z2
)Zν = 0 , (15.45)
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regular at the origin. Thus

g(b, θ)→ Dp(b, θ)m′m = ei(m
′−m)φJm−m′(p b)e

−imθ , (15.46)

(ii) m′ ≥ m

In this case the summation range is

` = 0, 1, 2, . . . , k = `+m′ −m ≥ 0 . (15.47)

so that

〈p,m′|T (b0)|p,m〉 = (−)m
′−m

(
p b

2

)m′−m ∞∑
`=0

(−)`(p b
2

)2`

`!(`+m′ −m)!

= (−)m
′−mJm′−m(p b) = Jm−m′(p b) (15.48)

where use was made of the relation

J−n(z) = (−)nJn(z) . (15.49)

The proof of this relation is left to the reader.

15.2 Unitary representations of E2: induced representation

Let us consider another possible unitary representations of E2 by the induced representation

method. For p2 = 0, i.e., p = 0, the states of the basis are |0,m〉 considered already. The

generators act

P±|0,m〉 = 0 , J |0,m〉 = m|0,m〉 . (15.50)

Finite elements act as

R(θ)|0,m〉 = e−imθ|0,m〉 , T (b)|0,m〉 = |0,m〉 . (15.51)

From now on we take p2 > 0. Consider a reference momentum

p = p0 = (p, 0) . (15.52)

Thus

P1|p0〉 = p|p0〉 ; P2|p0〉 = 0 , P 2|p0〉 = p2|p0〉 . (15.53)

R(θ) acts nontrivially on it:

Pk(R(θ)|p0〉) = R(θ)R(θ)−1PkR(θ)|p0〉
= R(θ) (R(−θ))`k P`|p0〉 = pk R(θ)|p0〉 (15.54)
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where

pk = (p0)` (R(−θ))`k = (R(θ))k` (p0)` (15.55)

is just p0 rotated by angle θ. (15.54) shows that the state R(θ)|p0〉 is an eigenstate of P

with eigenvalue, p,

|p〉 ≡ R(θ)|p0〉 . (15.56)

E2 acts on it as

T (b)|p〉 = e−ib·p |p〉 ; (15.57)

R(φ)|p〉 = R(φ)R(θ)|p0〉 = |p′〉 . (15.58)

In other words ensemble of |p〉 with p in all possible directions and magnitudes form the

basis of a new representation space of E2
19. It is not difficult to recover the representation

(15.33) from the above by appropriate change of the basis [2].

16 The Lorentz group

16.1 Definition; algebra of the proper Lorentz group

The Lorentz group is defined by

xµ → Λµ
νx

ν (16.1)

such that the four-vector squared

xµxµ = xµxνgµν = (x0)2 − x2 (16.2)

is invariant; equivalently the Minkowski metric

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (16.3)

is left invariant:

gµν → gµνΛ
µ
λΛν

σ = gλσ . (16.4)

It follows from the above that

(det Λ)2 = 1 , ... det Λ = ±1 . (16.5)

Let us choose

det Λ = Λ0
µΛ1

νΛ
2
ρΛ

3
σε
µνρσ = 1 , (16.6)

19This is analogous to the use of the plane wave basis in solving 3D Schrödinger equations as compared
to the angular-momentum-spherical-wave basis, which is similar to the representation of Subsection 15.1.
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where εµνρσ is a totally antisymmetric tensor with

ε0123 = 1 . (16.7)

From (16.4) it follows that

(Λ0
0)2 −

∑
i

(Λi
0)2 = 1 , ... Λ0

0 ≥ 1 , or Λ0
0 ≤ −1 . (16.8)

The transformations with the properties (16.6) and

Λ0
0 ≥ 0 , (16.9)

form proper, ortho-chronous Lorentz group, sometime indicated as L̃+.

Eq. (16.6) can be written in a more general form,

εµνρσΛα
µΛβ

νΛγ
ρΛ

δ
σε
µνρσ = εαβγδ . (16.10)

This and (16.4) show that gµν and εµνρσ are invariant tensor of the Lorentz group.

Some explicit forms are:

Λ(rotation)12 =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 (16.11)

for rotations in (12) plane, and

Λ(boost) =


γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ

 (16.12)

for a boost in the z direction, where

β =
v

c
; γ =

1√
1− β2

. (16.13)

Or by introducing

β = tanh ξ , γ =
1√

1− tanh2 ξ
= cosh ξ , −∞ < ξ <∞ , (16.14)
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Λ(boost) =


cosh ξ 0 0 sinh ξ

0 1 0 0

0 0 1 0

sinh ξ 0 0 cosh ξ

 , (16.15)

which looks more similar to a rotation, i.e., a rotation with a pure imaginary angle.

The six generators of the Lorentz group, in the vector representation, are simply 20

(Jλσ)νµ = i(δνλ gσµ − δνσ gλµ) , (16.16)

cfr. (14.5) for the SO(4) generators. The group L̃+ is also known as SO(3, 1). The so(3, 1)

algebra can be worked out straightforwardly:

[Jµν , Jλσ] = −i{Jλνgµσ − Jλµgνσ − Jσνgµλ + Jσµgνλ} . (16.17)

Let us denote the rotation and boost generators as 21

Jk ≡
1

2
εk`mJ`m , Km ≡ Jm 0 . (16.18)

In terms of these, the so(3, 1) algebra reads

[Jm, Jn] = iεmn`J` , [Km, Jn] = iεmn`K` , [Km, Kn] = −iεmn`J` . (16.19)

Now we define 22

Mm ≡
Jm + iKm

2
; Nm ≡

Jm − iKm

2
; (16.20)

in terms of these the algebra decouples:

[Mm,Mn] = iεmn`M` , [Nm, Nn] = iεmn`N` , [Mm, Nn] = 0 , (16.21)

showing

so(3, 1) ∼ su(2)× su(2) . (16.22)

20A remark on the notation: here the label for the six generators are in lower indices, whereas the matrix
indices are given as mixed suffix-index, as is appropriate with the Minkowski metric.

21We use the Latin letters k, `,m, . . . for the space indices, 1, 2, 3, whereas the Greek letters µ, ν, λ, . . .
for spacetime indices, 0, 1, 2, 3.

22This is very similar to what was done for SO(4); note however the crucial factor i.
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16.2 Finite representations of L̃+

The isomorphism so(3, 1) ∼ su(2) × su(2) allows us to introduce finite irreducible repre-

sentations, labeled by the Casimirs

(j1, j2), j1, j2 = 0,
1

2
, 1,

3

2
, 2, . . . , (16.23)

and the results found for SU(2) group before. The two Casimirs are

M2 = j1(j1 + 1) , N2 = j2(j2 + 1) ; (16.24)

the basis vectors are

|j1,m1〉|j2,m2〉 , M3 = m1 = j1, j1 − 1, . . . ,−j1 , N3 = m2 = j2, j2 − 1, . . . ,−j2 .

(16.25)

Some of the small representations are

(0, 0), (
1

2
, 0), (0,

1

2
), (1, 0), (0, 1), (

1

2
,
1

2
), . . . . (16.26)

The scalar fields, Weyl fermions of plus and minus chiralities (see more about these below),

the electric and magnetic field, and vectors fields, respectively, are example of physical fields

transforming according to these representations.

The explicit form of the (j1, j2) representation of L̃+ can be found readily by using the

results from the SU(2) theory, (12.43)-(12.45). By inverting (16.20),

J3 = M3 +N3 , J± = M± +N± ; (16.27)

K3 = i(N3 −M3) , K± = i(N± −M±) ; (16.28)

and writing

|j1,m1〉|j2,m2〉 ⇒ |m1,m2〉 (16.29)

one finds

J3|m1,m2〉 = (m1 +m2)|m1,m2〉 ; (16.30)

J+|m1,m2〉 =
√

(j1 −m1)(j1 +m1 + 1)|m1 + 1,m2〉
+

√
(j2 −m2)(j2 +m2 + 1)|m1,m2 + 1〉 ; (16.31)

J−|m1,m2〉 =
√

(j1 +m1)(j1 −m1 + 1)|m1 − 1,m2〉
+

√
(j2 +m2)(j2 −m2 + 1)|m1,m2 − 1〉 ; (16.32)

K3|m1,m2〉 = i(m2 −m1)|m1,m2〉 ; (16.33)
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K+|m1,m2〉 = i
√

(j2 −m2)(j2 +m2 + 1)|m1,m2 + 1〉
− i

√
(j1 −m1)(j1 +m1 + 1)|m1 + 1,m2〉 ; (16.34)

K−|m1,m2〉 = i
√

(j2 +m2)(j2 −m2 + 1)|m1,m2 − 1〉
− i

√
(j1 +m1)(j1 −m1 + 1)|m1 − 1,m2〉 ; (16.35)

These give complete (2j1 +1)(2j2 +1)×(2j1 +1)(2j2 +1) matrix elements of the generators

Ji, Ki (∼Mµν).

Let us make several observations.

(i) Due to the factor i in (16.28) the generators are non Hermitian: the representation is

non unitary. This reflects the noncompact nature of the Lorentz group (the Boosts!).

(ii) In a compact group, each finite representation is equivalent to a unitary representation.

(iii) Vice versa, an irreducible representation in a noncompact group is either finite but

non unitary, or unitary but infinite-dimensional.

(iv) Can one make a good use of these finite but nonunitary representations (j1, j2) in

physics? The answer is: YES. In quantum mechanics or especially, in quantum field

theories, a central role in the theory is played by the operators. Thus field operators

such as

φ(scalar) ∼ (0, 0) , (16.36)

ψL(Weyl fermion) ∼ (
1

2
, 0) , (16.37)

ψR(Weyl fermion) ∼ (0,
1

2
) , (16.38)

Aµ(vector) ∼ (
1

2
,
1

2
) , (16.39)

Fµν(fieldtensor) ∼ (
1

2
,
1

2
)⊗ (

1

2
,
1

2
)

∼ (1, 0)⊕ (0, 1) , (16.40)

and so on, play the role of the basic building blocks with which the standard model of

fundamental interactions (based on the gauge group SU(3)×SUL(2)×UY (1)) or the

Grand Unified Theories (such as based on SU(5) or SO(10) groups) is constructed.

16.3 Spinor representations and Chiralities

Another powerful observation in the analysis of the Lorentz group is the isomorphism

so(3, 1) ∼ sl(2,C). The group SL(2,C) is a special linear group of regular 2× 2 complex
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matrices, with

detM = 1 . (16.41)

Clearly the number of independent degrees of freedom in M

4× 2− 2 = 6 , (16.42)

matches with that of the Lorentz group, 3 rotations and 3 boosts. The actual correspon-

dence can be constructed as follows, by first defining four 2× 2 Hermitian matrices,

σµ ≡ (−1, σi) , σ̄µ ≡ (−1,−σi) , (16.43)

where

σ1 =

(
0 1

1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0

0 −1

)
(16.44)

are the Pauli matrices. Now given a generic four vector pµ one defines a 2× 2 matrix

P = pµσµ =

(
−p0 − p3 −p1 + ip2

−p1 − ip2 −p0 + p3

)
. (16.45)

As

Tr (σ̄µσν) = 2 gµν , (16.46)

the above relation can be inverted:

pµ =
1

2
Tr(σ̄µP ) . (16.47)

Now consider a transformation of P ,

P ⇒MPM † = P ′ , (16.48)

where M ∈ SL(2,C). Clearly,

detP ⇒ det(MPM †) = detP ′ , (16.49)

as detM = 1. But as

detP = (p0)2 − p2 = pµpµ (16.50)

(16.48) clearly represents a Lorentz transformation on a four vector.

The relation between (16.49) and the Lorentz transformation can be made more explicit:

actually it is easy to verify that M = e
i
2
φ·σ and M = e

1
2
ω·σ describe, respectively, the three

rotations and three boosts, respectively.
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As a group, SL(2,C) is simply connected: it represents a universal (double-)covering

of SO(3, 1).

A spinor of left or right chirality can be defined as quantities transforming as ψ ⇒M ψ

or ψ̄ ⇒ ψ̄M †. By introducing the su(2)× su(2) indices α, α̇ = 1, 2,

ψα ⇒Mβ
αψβ ; ψ̄α̇ ⇒ (M∗)β̇α̇ψ̄β̇ . (16.51)

It is also useful to raise or lower the spinor indices by antisymmetric su(2)× su(2) tensors

ε12 = −ε21 = −ε12 = ε21 = 1 , (16.52)

as

ψα = εαβψβ , ψ̄α̇ = εα̇β̇ψ̄α̇ , (16.53)

then these spinors transform as

ψα ⇒ (M−1)αβ ψ
β ; ψ̄α̇ ⇒ ((M∗)−1)α̇

β̇
ψ̄β̇ (16.54)

(the proof of which is left to the reader). The 2×2 matrix P can then be seen to transform

as

Pαβ̇ = pµ(σµ
αβ̇

) ∼ ψαψ̄β̇ ∼ (1
2
, 1

2
) , (16.55)

whereas ψ ∼ (1
2
, 0), ψ̄ ∼ (0, 1

2
).

Other useful combinations are

ψαψα , ψ̄α̇ψ̄
α̇ , iψα(σµ)αβ̇∂µψ̄

α̇ (16.56)

which are all invariant under su(2) × su(2) or sl(2,C): they are Lorentz invariant. They

can be used to write a mass term or the kinetic terms for the fermions.

The 4× 4 Dirac matrices are

γµ =

(
0 σµ

σ̄µ 0

)
(16.57)

they act on four-component Dirac spinor (e.g., an electron)

ψD =

(
χα
ψ̄α̇

)
, ψ̄D ≡ ψ†Dγ

0 = (−ψα − χ̄α̇) . (16.58)

The free Dirac equation has the form

(iγµ∂µ −m)ψD = 0 ,

(
−m iσµ∂µ
iσ̄µ∂µ −m

)(
χα
ψ̄α̇

)
= 0 , (16.59)
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Massless fermion of definite chirality is describer by Weyl’s equation,

iσµ∂µψ̄
α̇ = 0 , (16.60)

or

Eψ̄ = i
∂

∂x0

ψ̄ = −σ · p ψ̄ = 0 . (16.61)

So

E > 0⇒ σ · p < 0 (16.62)

and ψ̄ can be interpreted as a wave function of negative helicity.

The generators of the Lorentz group in the spinor representations are given by (cfr.

Eq. (16.16))

Jµν =
i

4
(γµγν − γνγµ) =

(
iσ

µσ̄ν−σν σ̄µ
4

0

0 i σ̄
µσν−σ̄νσµ

4

)
. (16.63)

Define the chirality

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
. (16.64)

with eigenvalues ± for chirality ± states.

The spinor generators (16.63) show that the particles (states) of positive and negative

chiralities (1
2
, 0) and (0, 1

2
) transform separately and independently, under the Lorentz

group. Indeed,

[γ5, J
µν ] = 0 : (16.65)

the chirality is conserved.

17 Poincaré group

The set of transformations of the type,

g(b,Λ) : xµ ⇒ (xµ)′ = Λµ
νx

ν + bµ , (17.1)

i.e., a Lorentz transformation followed by translation, which leaves invariant the Minkowski

geodesic

ds = dxµgµνdx
ν , (17.2)

form the Poincaré group, P̃ . The group product rule is

g(b′,Λ′)g(b,Λ) = g(Λ′b+ b′,Λ′Λ) , (17.3)
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as can be easily verified. By construction a generic element of the Poincaré group can be

written in a factorized form,

g(b,Λ) = T (b) Λ , (17.4)

with an obvious notation, so that

g(0,Λ) = Λ, g(b,1) = T (b) . (17.5)

Let us introduce the generator of the translation as Pµ, i.e.,

T (b) = e−ib
µPµ , (17.6)

The algebra of the Poincaré group is

[Pµ, Pν ] = 0 ; [Pµ, Jλ,σ] = i(Pλgµσ − PσgµΛ) ; (17.7)

[Jµν , Jλσ] = i(Jλνgµσ − Jλµgνσ − Jσνgµλ + Jσµgνλ) , (17.8)

where the last ones are just the Lorenz group subalgebra. The Lorentz transformations

and the translations form two subalgebras; the translations form Abelian ideal (invariant

subalgebra). The Poincaré algebra is non semi-simple and non compact.

Theorem: The translation subgroup T (b) forms an Abelian, invariant subgroup; more

precisely

ΛT (b)Λ−1 = T (Λb) . (17.9)

The proof is straightforward: in fact, use of (17.3), (17.5) gives

g(0,Λ)g(b,1)g(0,Λ−1) = g(0,Λ)g(b,Λ−1) = g(Λb,1) = T (Λb) . (17.10)

In terms of the generators {P µ, Jλσ} ∼ {P 0, Pm, Jm, Km} the algebra becomes:

[P 0, Jn] = 0 ; [Pm, Jn] = iεmnkPk ; (17.11)

[Pm, Kn] = iδmnP
0 ; [P 0, Kn] = iPn ; (17.12)

[Jm, Jn] = iεmn`J` , [Km, Jn] = iεmn`K` , [Km, Kn] = −iεmn`J` . (17.13)

Out of these generators, two Casimir operators can be formed:

C1 ≡ P µPµ , C2 ≡ W λWλ , (17.14)

where

W λ = ελµνσJµνPσ/2 , (17.15)
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is the Pauli-Lubanski vector. It satisfies several relations

W λPλ = 0 ; [W λ, P µ] = 0 ; (17.16)

[W λ, Jµν ] = i(W µgλν −W νgµλ) ; [W λ,W σ] = iελσµνWµPν . (17.17)

It can be easily shown that C1,2 commute with all generators, so they can be used to label

the possible irreducible representations.

Note that in the subspace with P µ = pµ (i.e., eigenstates of the four momentum),

W λ = ελµνσJµνpσ/2 , (17.18)

so that, for instance, in states with momenta pµ = (M,0),

W 0 = 0 , W i =
M

2
εijkJjk (17.19)

which are just the angular momentum operators: the little (stability) group of (pµ = (M,0).

Theorem 1

The irreducible representations of P̃ are classified by the eingenvalues of C1,2.

Theorem 2

In the subspace with P µ = pµ the independent components of W µ generate a subgroup

of G(pµ) ⊂ P̃ . This fact immediately follows from the last of Eq. (17.17). It is the little

group of pµ.

Theorem 3

The representation of P̃ can be constructed from the irreducible representations of

G(pµ) by repeated applications of Lorentz transformations. They are known as the induced

representations. Some examples of physical interest are discussed below.

17.1 Zero momentum states pµ = 0; C1,2 = 0

In this case

G(pµ = 0) = L̃+ , (17.20)

and the problem reduces to that of the irreducible representations of the Lorentz group,

already solved in the previous section.
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17.2 Timelike momenta C1 > 0; pµpµ = M 2 > 0

Let us take as a reference momentum,

pµ = (M,0) , (17.21)

or consider the center-of-mass system. The Pauli-Lubanski vector reduces to, in this sub-

space

W i = M J i ∈ so(3) : (17.22)

the rotation generators. The irreps of this little group are known: they are completely

classified by the value of the spin, j, with the base vectors

|0, j,m〉 , (17.23)

such that

P µ|0, j,m〉 = pµ0 |0, j,m〉 , pµ0 = (M,0) ; (17.24)

J2|0, j,m〉 = j(j + 1)|0, j〉 ; J3|0, j,m〉 = m|0, j,m〉 . (17.25)

The actions of J1,2 have been worked out before. All other vectors can be constructing by

acting the rotations and boosts on these vectors.

For instance,

|pẑ, j,m〉 = L3(ξ)|0, j,m〉 , p = M sinh ξ (17.26)

where L3 is a boost in the ẑ direction, (16.15). A general vector is obtained by rotating it:

|p, j,m〉 = R(α, β, 0)|pẑ, j,m〉 = H(p)|0, j,m〉 , (17.27)

H(p) ≡ R(α, β, 0)L3(ξ) . (17.28)

Theorem: The vectors |p, j,m〉 thus constructed provides the basis vectors of all possible

irreducible unitary representations of P̃ .

The generators act on them as:

T (b)|p, j,m〉 = e−ib
µpµ|p, j,m〉 ; (17.29)

Λ|p, j,m〉 = Dj
m′m(R(Λ,p)) |p′, j,m′〉 , (17.30)

where [2]

p′ = Λp ; R(Λ,p) = H−1(p′)ΛH(p) . (17.31)
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17.3 Lightlike momenta C1 = P µPµ = 0 , M 2 = 0

The states with a generic momentum p can be obtained from a reference momentum p`,

pµ` = (ω0, 0, 0, ω0) (17.32)

by appropriate Lorentz transformation. Let us first find out the irreducible representations

of the little group of p`.

The Pauli-Lubanski vectors take, in this subspace the form

W 0 = −W 3 = ω0J12 = ω0J3 ; (17.33)

W 1 = ω0(J23 + J20) = ω0(−J1 +K2) ; (17.34)

W 2 = ω0(J31 − J10) = ω0(−J2 −K1) ; (17.35)

from which follows the second Casimir,

C2 = W µWµ = −(W 2
1 +W 2

2 ) (17.36)

and

[W 1,W 2] = 0 ; [W 2, J3] = iW 1 ; [W 1, J3] = −iW 2 . (17.37)

Remarkably, these are isomorphic to the algebra of E2 studied in Section 15, if a formal

identification W 1,2 ⇒ T 1,2 is made.

As in the SO(2) coset representation of E2 (for p = 0 there) the representation of the

little group is one-dimensional,

P µ|p`, λ〉 = pµ` |p`, λ〉 ; (17.38)

J3|p`, λ〉 = λ|p`, λ〉 ; Wi|p`, λ〉 = 0 . (17.39)

where

λ = 0,±1

2
,±1,±3

2
, . . . λhalfint (17.40)

correspond to the helicity p · s/p of the state.

Theorem:

The vectors

|p, λ〉 = H(p)|p`, λ〉 , H(p) = R(α, β, 0)L3(ξ) (17.41)

or

|p, λ〉 = R(α, β, 0)|pẑ, λ〉 ; p = p0 = ω0e
ξ , (17.42)

form the basis of unitary irreducible representations of P̃ .
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The finite elements act as

T (b)|p, λ〉 = e−ib
µpµ |p, λ〉 ; Λ|p, λ〉 = e−iλθ(Λ,p)|Λp, λ〉 , (17.43)

where the angle θ(Λ, p) is defined by (see [2])

e−iλθ(Λ,p) = 〈p`, λ|H(Λp)−1ΛH(p)|p`, λ〉 . (17.44)

Note that the helicity λ is invariant.

Remark:

The proper representations of SO(2) group are characterized by integer winding num-

bers,

λ = m = 0, 1, 2, . . . (17.45)

(see Eq. (10.14)). However we do know that the rotation group SO(3) (hence its subgroup

SO(2)) allows for improper (spinor) representations. They are the irreps of its covering

group SU(2). From physics point of view, on the other hand, we know that in Nature there

exist particles carrying half integer spins (intrinsic angular momentum), e.g., electrons,

neutrinos, nucleons, quarks, etc. Therefore it is appropriate to allow for half-integer helicity

states in the representations of the Poincaré group, as our description of Nature.
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Part V

Roots, weights and Dynkin diagrams

The roots and weight systems for the Lie algebras will be discussed here. They provide us

with a deep understanding of the structure of the different Lie algebras and their relations.

These systems are so restrictive that in terms of a few inputs (the simple roots) the entire

algebra can be reconstructed, and furthermore such a construction leads to the complete

classification of semi-simple Lie algebras of compact groups.

18 Root and weight vectors of a semi-simple algebra

A semi-simple Lie algebra can be cast in the following form (Cartan-Weyl basis):

[Hi, Hj] = 0; , i, j = 1, 2, . . .m ,

[Hi, Eα] = αiEα ,

[Eα, Eβ] = Nαβ Eα+β , (α + β 6= 0 , α + β ∈ Φ) ,

[Eα, E−α] = αiHi = α ·H . (18.1)

The commuting generators Hi together form a subalgebra known as the Cartan subalgebra.

Its dimension m is the rank of the algebra (and of the group it generates). The vectors α,

α = (α1, α2, . . . , αm) (18.2)

are known as the root vectors. The set of all root vectors of the algebra is denoted as Φ.

The normalization of the generators can be conveniently fixed by

Tr HiHj = k δij . (18.3)

The raising and lowering operators J± of su(2) algebra (see Eq. (12.21), Eq. (12.22) are

example of Eα, E−α. Given two root vectors α and β their inner product is defined as

α · β =
∑
i

αiβi , α2 =
∑
i

αiαi , (18.4)

etc.
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We define a triplet of generators associated to a root vector α, as 23

J1 =
1√
2α2

(Eα + E−α) , J2 =
−i√
2α2

(Eα − E−α) , (18.5)

J3 = α∗ ·H , α∗ =
α

α · α
. (18.6)

It can be easily checked that Ji’s satisfy an su(2) algebra:

[Ji, Jj] = iεijkJk . (18.7)

It is a remarkable property of any semi-simple Lie algebra that it contains various su(2)

subalgebras, each associated with a triplet of generators, Eα, E−α and α ·H. From this

simple fact, there follow three fundamental theorems of group theory. Define also a weight

vector |µ,R〉
Hi|µ,R〉 = µi|µ,R〉 (18.8)

in any reresentation R. As seen already in the examples in SU(3) theory, the weight

vectors are vectors whose components are the simultaneous eigenvalues with respect to

the commuting generators, Hi.
24

(1) Theorem 1: if α and β are two roots, then

2α · β
α · α

∈ Z ; (18.9)

(2) Theorem 2: if α and β are two roots, then

β − 2α · β
α · α

α (18.10)

is a root. This is known as Weyl’s reflection;

(3) Theorem 3: for any weight vector µ in any representation, and for any root vector

α,
2α · µ
α · α

∈ Z (18.11)

holds.

As the root vectors are nothing but the weight vectors in the adjoint representation, The-

23As this su(2) subalgebra is associated with a particular root vector α, it would be more adequate to
indicate these generators as Jα1 , Jα2 , etc., but these suffixes will be omitted for simplicity of writing. No
confusion should arise.

24In quantum mechanics, an analogous theorem states that the states can be chosen such that they are
simultaneous eigenstats of such operators, implying that these operators represent mutually compatible
observables, i.e., they can have definite values simultaneously. Vice versa, the operators which do not
commute represent dynamical variables which suffer from Heisenberg’s uncertainty relations.
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orem 1 can be regarded as a special case of Theorem 3. These theorems will be proven

below.

18.1 Illustrations with the SU(3) group

The concepts of the roots and weights have already been introduced in the discussion of

the SU(3) group. It can be seen easily that the SU(3) algebras (13.7)-(13.11) have already

the form of the Cartan basis. The three su(2) subalgebras associated with the isospin

I± = T1 ± iT2, T
3, with the V spin, V± = T4 ± iT5, V

3 and the U spin, U± = T6 ± iT7, U
3

can be identified with (18.5), (18.6), associated with the three pairs of nonzero root vectors,

±αi,

α1 = (1, 0) ; α2 = (
1

2
,

√
3

2
) ; α3 = (

1

2
,−
√

3

2
) . (18.12)

The precise relations are

E±α1 =
1√
2

(T1 ± iT2) ; (18.13)

E±α2 =
1√
2

(T4 ± iT5) =
1√
2
V± ; (18.14)

E±α3 =
1√
2

(T6 ± iT7) =
1√
2
U± ; (18.15)

H1 = T3 =
1

2

 1 0 0

0 −1 0

0 0 0

 ; H2 = T8 =
1

2
√

3

 1 0 0

0 1 0

0 0 −2

 . (18.16)

The weight vectors of the fundamental representations have been given in (13.16):

µ1 = (1
2
, 1

2
√

3
), µ2 = (−1

2
, 1

2
√

3
), µ3 = (0,− 1√

3
). (18.17)

(The weight vectors of a complex conjugate representation r∗ are simply minus of the

weight vectors of r). See Fig. 6.

The adjoint representation 8 arises from the decomposition 3 × 3∗ = 8 + 1, the root

vectors are related to the weight vectors of the fundamentals, and made to correspond to
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the |qq∗〉 states:

root (weight) vector vector in 8 ,

α1 = µ1 − µ2 = (1, 0) = |Eα1〉 ←→ |q1〉|q∗2〉 ;

α2 = µ1 − µ3 = (1
2
,
√

3
2

) = |Eα2〉 ←→ |q1〉|q∗3〉 ;

α3 = µ3 − µ2 = (1
2
,−
√

3
2

) = |Eα3〉 ←→ |q3〉|q∗2〉 ;

−α1 = µ2 − µ1 = (−1, 0) = |E−α1〉 ←→ |q2〉|q∗1〉 ;

−α2 = µ3 − µ1 = (−1
2
,−
√

3
2

) = |E−α2〉 ←→ |q3〉|q∗1〉 ;

−α3 = µ2 − µ3 = (−1
2
,
√

3
2

) = |E−α3〉 ←→ |q2〉|q∗3〉 ; (18.18)

furthermore, there are two null root vectors

α0 1 = (0, 0) = |E01〉 ←→
|q1〉|q∗1〉 − |q2〉|q∗2〉√

2
(18.19)

α0 2 = (0, 0) = |E02〉 ←→
|q1〉|q∗1〉+ |q2〉|q∗2〉 − 2|q3〉|q∗3〉√

6
, (18.20)

eight in all.

N.B. Another |qq∗〉 state
|q1〉|q∗1〉+ |q2〉|q∗2〉+ |q3〉|q∗3〉√

3
(18.21)

is invariant: it corresponds to 1 of SU(3).

19 SU(2) substructures of a general semi-simple Lie

algebra

The diagonal generators commute with each other:

[Hi, Hj] = 0 : Tr(HiHj) = kDδij , i, j,= 1, 2, . . . ,m , H†i = Hi . (19.1)

They form the Cartan subalgebra. The simultaneous eigenvectors with respect to them,

Hi|µ,R〉 = µi|µ,R〉 , i = 1, 2, . . . ,m , (19.2)

where

µ = (µ1, µ2, . . . , µm) , (19.3)
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defines a weight vector in R representation. (m= the rank of the algebra). Let us introduce

a scalar product between a root vector and a weight vector:

(α · µ) = αi µi . (19.4)

The algebra (see (18.1))

[Hi, Eα] = αiEα , i = 1, 2, . . . ,m , (19.5)

defines a root vector α = (α1, α2, . . .). Now by taking the Hermitian conjugate of the

above,

[Hi, E
†
α] = −αiE†α (19.6)

one sees that

E−α = E†α, cfr. [Hi, E−α] = −αiE−α (19.7)

E±α acts as the raising and lowering operator (cfr. J± of su(2)). Indeed,

HiE±α|µ〉 = ([Hi, E±α] + E±αHi)|µ〉
= (±αi + µi)(E±α|µ〉) , (19.8)

that is,

E±α|µ〉 ∝ |µ± α〉 , (19.9)

unless

E±α|µ〉 = 0 . (19.10)

The other commutators are

[Eα, Eβ] =

{
Nα+βEα+β if, α + β ∈ Φ ;

0 otherwise.
(19.11)

And finally

[Eα, E−α] = α ·H . (19.12)

The root vectors together with Nα+β characterize the whole algebra. Actually, as we shall

see below (subsection 20.8), the structure of the Lie algebras is so restrictive, that certain

subset of the root vectors, called simple roots, completely determine the algebra (other

roots and Nα+β follow from those). See below.

Ricapitulating, various su(2) subalgebras (18.5), (18.6)

J1 =
1√
2α2

(Eα + E−α) , J2 =
−i√
2α2

(Eα − E−α) , (19.13)
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J3 = α∗ ·H , α∗ =
α

α · α
. (19.14)

associated with each nonzero root vector are nested within any given Lie algebra 25. The

importance of this fact, in understanding the theory of Lie algebras, can hardly be overem-

phasized.

Applying the results such as (19.8), (19.9) to the adjoint representation (where µ = α

are the weight vectors) lead to some useful relations 26

Hi|α〉 = αi|α〉 ; Hi|0〉 = 0 ; Eα|0〉 = c |α〉 ; (19.15)

(c is a constant) so that

[Hi, Eα]|0〉 = Hi c |α〉 − EαHi|0〉 =

= αi c |α〉 = αiEα|0〉 : (19.16)

which is consistent with the algebra [Hi, Eα] = αiEα.

From the theory of SU(2) group, we know that

(i) The SU(2) irreps are labelled by their Casimir, J2 = j(j + 1), j takes a nonegative

integer or a semi-integer value only: j = n
2

= 0,±1
2
, 1, 3

2
, 2, . . .;

(ii) The eigenvalues of J3 are j, j − 1, j − 2, . . . ,−j;

(iii) J± are the raising and lowering operator of j3 by one.

Applying these to one of the sub su(2),

J3 =
α ·H
|α|2

; J3 |µ〉 =
α · µ
α2
|µ〉 ; (19.17)

where α and µ are arbitrary root vector and weight vector. Theorem 3 and hence The-

orem 1 follow from the properties (i) and (ii) of a general su(2) algebra.

19.1 Proof of Theorem 2

The proof of Theorem 2 is also a straightforward application of these structures, applied

to the adjoint representation. Start with

J
(α)
3 |β〉 =

α · β
α2
|β〉 = j3|β〉 . (19.18)

25For precision these would have to be called J
(α)
1 , J

(α)
2 , etc., but the superscript (α) is omitted whenever

the risk of misunderstanding is small.
26Read |α〉 ≡ |α,Radj〉, etc.
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As

E±α|β〉 ∝ |β ± α〉 , (19.19)

|β〉 is a member of an su(α)(2) multiplet. Indeed it easy to show that

J3E−α|β〉 = (
α · β
α2
− 1)E−α|β〉 (19.20)

(the proof is left for the reader). From the known structure of an SU(2) multiplet, we

know that if α·β
α2 = j3 > 0, there must be a member with j3 = −α·β

α2 . Indeed acting E−α on

|β〉, 2α·β
α2 ∈ Z≥0 times, one gets

(E−α)
2α·β
α2 |β〉 ∝ |β − 2α · β

α2
α〉 , (19.21)

i.e., β − 2α·β
α2 α is another root vector. If α·β

α2 = j3 is negative, we know that there must be

a state with j3 = |j3|, which can be obtained by acting on β with Eα, −2α·β
α2 ∈ Z≥0 times,

reaching the same conclusion. Q.E.D.

19.2 Properties of the root vectors

A generic state (a weight vector) |µ,R〉 is a member of certain su(2) multiplet, (19.17).

Let j = Max{j3} of this multiplet. Thus for any |µ,R〉 there is an integer p ∈ Z≥0 such

that

Jp+|µ,R〉 6= 0 , Jp+1
+ |µ,R〉 = 0 . (19.22)

But since

J3J
p
+|µ,R〉 = (

α · µ
α2

+ p)Jp+|µ,R〉 (19.23)

this means that
α · µ
α2

+ p = j , (19.24)

with j either an integer or a half-integer. Similarly there is a nonnegative integer q such

that
α · µ
α2
− q = −j . (19.25)

By summing these two relations one finds that

2α · µ
α2

+ p− q = 0 . (19.26)

This is consistent with Theorem 3; the integers p and q label the positions of |µ,R〉 within

the multiplet SU (α)(2).

Now we apply this important relation to a root vector β (which is a weight vector in
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(p− q)(p′ − q′) cos θαβ θαβ
0 0 π/2
1 ±1/2 π/3, 2π/3

2 ±1/
√

2 π/4, 3π/4

3 ±
√

3/2 π/6, 5π/6

Table 12:

the adjoint representation), µ = β, to get

α · β
α2

= −1

2
(p− q) , (19.27)

and interchanging the roles of su(α) and su(β), to find

α · β
β2

= −1

2
(p′ − q′) , (19.28)

so that

cos2 θαβ =
(α · β)2

α2β2
=

(p− q)(p′ − q′)
4

, (19.29)

where

p, q, p′, q′ ∈ Z≥0 . (19.30)

Clearly this implies that
(p− q)(p′ − q′)

4
≤ 1 . (19.31)

But as p, q, p′, q′ ∈ Z≥0 only four possibilities are allowed for the angle between two root

vectors: see Table 12.

20 Simple roots

Definition: A weight vector (µ1, µ2, µ3, . . .) is said to be positive, if the first nonvanishing

component is positive.

This allows to order the weights: we say µ > ν, if µ− ν is positive.

Definition: In particular, the highest weight of a representation is the one which is larger

(higher) than all other weights.

Definition: Simple roots

Consider the roots {α1, α2, . . .} ∈ Φ of a given Lie algebra. Some of them are positive. A

positive root, which cannot be written as a vector sum of other positive roots, is simple.

In a given algebra, there are exactly m simple roots, where m is the rank of the algebra.

(Exercise: prove this). Let Λ denote the set of the simple roots, just as Φ denote the set

of all roots. Λ ⊂ Φ.
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It follows from these definitions, that if a weight is annihilated by all the generators Eα
associated with simple roots,

Eα|µ〉 = 0 , α ∈ Λ , (20.1)

then it is a highest weight.

Problem: Find the highest weight vectors of representations 3, 8, 10 of SU(3).

Problem: Find the simple roots of SU(3) and SU(4) algebras.

Theorem

If α 6= β are two simple roots, then α− β is not a root.

The proof is a simple reductio ad absurdum. Assume that α− β were a root, call it γ.

Without losing generality we assume α − β > 0. Then γ would be a positive root, and it

would follow that α = β + γ, i.e., α is a sum of two positive roots, which contradicts the

supposition that α and β are both simple.

From this theorem it follows that

E−α|β〉 = E−β|α〉 = 0 , α, β ∈ Λ . (20.2)

Recalling that E−α is a lowering operator J
(α)
− of suα(2), and similarly for E−β, the above

means that a simple root is the lowest member of all SU(2) multiplets associated with

other simple roots. See Fig. 9. It follows that

α · β
α2

+ p = j ;
α · β
α2
− 0 = −j ; (20.3)

that is,
2α · β
α2

= −p ; (20.4)

and similarly,
α · β
β2

+ p′ = j′ ;
α · β
β2
− 0 = −j′ ; (20.5)

that is,
2α · β
β2

= −p′ . (20.6)

Namely for a couple of simple roots α, β, there is a relation

α · β
α2

= −p
2

;
α · β
β2

= −p
′

2
(20.7)

so that

cos θαβ = −
√
pp′

2
,

β2

α2
=
p

p′
. (20.8)
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two simple roots a generic root acted on
by a simple root

Figure 9:

Therefore,
π

2
≤ θαβ ≤ π , α · β ≤ 0 . (20.9)

Here are a few more theorems.

Theorem: The simple roots are linearly independent.

The proof is again straightforward.

γ =
∑
α∈Λ

xαα = 0 (20.10)

is clearly not possible if xα > 0, ∀α. If some of xα are negative, we may write the above as

γ =
∑
αi∈Λ

xiαi −
∑
αj∈Λ

xjαj ≡ µ− ν = 0 (xi, xj > 0) . (20.11)

Again this is impossible, as

γ2 = µ2 + ν2 − 2
∑
i,j

xixjαi · αj > 0 , (20.12)

where use was made of (20.9).

Theorem: Any positive root can be written as a linear combination of simple roots, with
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positive integer coefficients,

φ =
∑
α∈Λ

kαα , kα ∈ Z≥0 . (20.13)

Theorem: The m simple roots form a complete set of vectors.

The proof again is done with a reductio ad absurdum: assume that there exists a

vector ξ = (ξ1, ξ2, . . . , ξm) which is orthogonal to all of the simple roots. It follows from

the previous theorems that such a vector is orthogonal to all positive roots, and indeed to

all roots,

ξ · α = 0, ∀α ∈ Φ . (20.14)

Then

[ξ ·H,Eα] = (ξ · α)Eα = 0 ; [ξ ·H,Hj] = 0 : (20.15)

i.e., ξ · H commutes with all generators, contradicting the hypothesis that the algebra is

semi-simple.

20.1 Reconstruction of the algebra from the simple roots

We have learned above that all positive roots φk have the form,

φk =
∑
α

kαα , α ∈ Λ , kα ∈ Z≥0 ; (20.16)

but it is clear that the opposite is not always true: not all of the expressions of this form

give a root vector. In other words, the question is, given all α ∈ Λ, which set {kα} yields

a root vector?

Let us proceed iteratively. If kα = 1 for an α ∈ Λ, then φ1 = α is obviously a root

(indeed it is a simple root). Suppose all of the roots which have the form of φk up to k ≤ `

have been found. Consider Eα|φ`〉: it would be proportional to the root |φ` + α〉, if it does

not vanish. Recall that a root vector φ` is in a position (p, q) specified by two integers,

2α · φk
α2

= −(p− q) , (20.17)

within an su(2) multiplet generated by a root vector α. See the right of Fig. 9, There will

necessarily be a nonnegative integer p such that

(Eα)p+1|φ`〉 = 0 . (20.18)

If p > 0 φ` + α is a root; If p = 0 φ` + α is not a root.
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For instance, for ` = 1, φ1 = β is a (simple) root. So q = 0, and with p, p′ ∈ Z≥0

2α · β
α2

= −p ;
2α · β
β2

= −p′ . (20.19)

If α · β = 0, then p = 0 and α + β is not a root; otherwise, it is a root.

An example from SU(3) The simple roots are α1 = (1
2
,
√

3
2

) and α2 = (1
2
,−
√

3
2

). β =

(1, 0) is a positive, but not simple, root. As (α1)2 = (α2)2 = 1, and α1 · α2 = −1
2
, one

verifies that
2α1 · α2

α2
1

=
2α1 · α2

α2
2

= −1 , ... p = p′ = 1 , (20.20)

so that α1 + α2 is a root (which is indeed equal to β). Similarly, it is easy to check that

none of α1 + 2α2, 2α1 + α2, α1 + 3α2, etc., belong to Φ. Adding the three negative and

null roots the root diagram of SU(3) is now complete.

We have not yet taken fully into account of the basic results on the simple roots, (20.8),

cos θαβ = −
√
pp′

2
, |β

α
| =

√
p

p′
. (20.21)

As the two integers can take only the values p, p′ = 0, 1, 2, 3 there are only several possi-

bilities:

(i) p = p′ = 0 , β/α indeterminate (so(4));

(ii) p = p′ = 1, θαβ = 120◦; β/α = 1 (su(3));

(iii) p = 1, p′ = 2, θαβ = 135◦; β/α = 1/
√

2 (so(5) ∼ usp(4));

(iv) p = 1, p′ = 3, θαβ = 150◦; β/α = 1/
√

3 (g2);

where the names of the appropriate rank 2 algebras are shown. See Fig. 10.

21 Dynkin diagrams

In a more general semi-simple algebra, these properties are summarized very efficiently by

the Dynkin diagrams. For any simple root we draw a little circle; for any pair of them they

are connected (or unconnected) by lines, according to the possible relations indicated in

Eq. (20.21), see Fig. 11.

Actually there are only two different magnitudes between the simple roots, in any

algebra. It is customary to indicate the larger simple root by an empty circle and the

smaller one by a full circle. The complete list of semi-simple, compact groups with their

Dyinkin diagrams is shown in Fig. 12.
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SU(3) SO(4)

SO(5)
Usp(4)

G2

P,S

P,S

P

P,S

P,S

P,S

P,S

P

P

P,S

P,S

P

P

P,S

P,S

P
P

P

P

Figure 10: Root diagrams of rank 2 groups are shown. Positive (P) and simple (S) roots
are indicated.
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Figure 11:

Another, equivalent, way to summarize the structure of a given Lie algebra is the use

of Cartan’s matrix, defined by

Aji ≡
2αj · αi
α2
i

, (21.1)

that is, the collection of the values of 2J
(αi)
3 for αj.

Aii = 2 (def) . (21.2)

Some examples of Aji are:

(
2 −1

−1 2

)
;

 2 −1 0

−1 2 −1

0 −1 2

 ;

(
2 −1

−3 2

)
, (21.3)

for su(3), su(4), and g2, respectively.
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A

An (su(n+1))

Dn (so(2n))

Bn (so(2n+1))

Cn (usp(2n))

G2

F4

E6 E7

E8

su(2) : su(3) :

su(4) :

so(4) :

so(6) : ~ su(4)

usp(4) ~ so(5)

Figure 12:
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Part VI

Some applications in quantum

mechanics

Group theory plays key roles in the understanding of symmetries and their manifestations

in physics in general, and in particular, in quantum mechanics. Here three well-known

applications of group theory in quantum mechanics will be discussed: the multi-dimensional

harmonic oscillator, the Hydrogen atom spectrum, and the Wigner-Eckart theorem.

22 Multi-dimensional isotropic harmonic oscillators

The two and three (or more generally D−) dimensional harmonic oscillators

H =
p2

2m
+

1

2
mω2r2 = ω~

D∑
i=1

(a†iai +
1

2
) , (22.1)

can be easily solved by separation of variables in Cartesian coordinates, the wave functions

reducing to the products of the one-dimensional harmonic oscillator states,

|Ψ〉N = |n1〉|n2〉 · · · |nD〉 , N = n1 + n2 + . . . nD , ni = 0, 1, 2, . . . . (22.2)

where

|n〉 =
a† n√
n!
|0〉 , (22.3)

with the energy

EN = ω~(N +
D

2
) . (22.4)

The creation and annihilation operators satisfy the commutation relations,

[ai, a
†
j] = δij , [ai, aj] = [a†i , a

†
j] = 0 . (22.5)

The degeneracy of the N -th energy level is then given by

G(N, 2) = N + 1 (D = 2) ; G(N, 3) =
(N + 1)(N + 2)

2
=

(N + 2)!

N ! 2!
(D = 3) ;

(22.6)

G(N,D) =
(N + 1)(N + 2) · · · (N +D − 1)

(D − 1)!
=

(N +D − 1)!

N ! (D − 1)!
, (22.7)

as can be easily found (see Appendix A) by counting the sets of {ni}’s which give the fixed
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total N = n1 + n2 + . . . nD.

How can we understand this degeneracy formula? Clearly the Hamiltonian (22.1) is

invariant under SO(D) transformations, but this alone does not explain the degeneracy.

For instance, for D = 3, the rotational invariance means that the 2L + 1 states with the

same angular momentum L are degenerate. This, complimented by the information that

the states at a given level N are even (for N=even) or odd (for N=odd) under parity, and

the fact that the maximum value of L at the level N is equal to N , shows that the total

degeneracy is indeed given by the sum

N∑
L even

(2L+ 1) =
(N + 1)(N + 2)

2
= G(N, 3) , N = even , (22.8)

N∑
L odd

(2L+ 1) =
(N + 1)(N + 2)

2
= G(N, 3) , N = odd , (22.9)

but the significance of the degeneracy among the states with different L remains to be

illucidated.

The crucial observation is that the Hamiltonian (22.1), written in terms of the cre-

ation and destruction operators, is actually invariant under a larger symmetry: SU(D) ⊃
SO(D). Let us indicate the generators of SU(D) asD×D matrices, T a, a = 1, 2, . . . , D2−1.

For D = 2 and D = 3, T a’s are just (one half) the Pauli matrices and the Gell-Mann ma-

trices, studied in Section 12 and Section 13, respectively. These satisfy the algebra

[T a, T b] = ifabc T c , (22.10)

where fabc are the structure constants of the SU(D) group.

Define the operators

Ta ≡
∑
i,j

a†i (T
a)ijaj , (22.11)

It can be easily verified that these satisfy

[Ta, H] = 0 , (22.12)

as well as the commutation relations

[Ta,Tb] = ifabc Tc . (22.13)

(These follow from the definition of the SU(D) generators, (22.10) and the commutation

relations (22.5). The derivation is left to the reader as an excercise.) Note that even though

(22.10) and (22.13) are formally identical, their meaning is different. The generators in

(22.10) are the ones defined in the fundamental representation, N : the matrices T a’s are

N ×N . Ta’s in (22.13) are defined in the infinite-dimensional space of the D- dimensional
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harmonic oscillator states,

|n1, n2, . . .〉, ni = 0, 1, 2, . . . . (22.14)

In particular, Eq. (22.12) shows that the action of SU(D) does not modify the energy

of the state

H eiT
aαa |N〉 = eiT

aαaH|N〉 = EN e
iTaαa |N〉 . (22.15)

On the other hand, the action of eiT
aαa on the states |N〉 = |n1〉|n2〉 · · · |nD〉 transform

these among themselves, in other words, the states at a given level N transform according

to an irreducible representation of SU(D). The matrices

〈n′1, n′2, . . .|eiT
aαa|n1, n2, . . .〉 ,

∑
i

n′i =
∑
i

ni = N , (22.16)

form indeed a G(N,D) dimensional irreducible representation of SU(D) group.

Writing these as

|N〉 =
∏
i

a† nii√
ni!
|0〉 , n1 + n2 + . . . nD = N (22.17)

these states can be interpreted as the states with N phonons (each with energy ω~), each

photon one of D different types, without ordering, as all of a†i ’s commute with each other.

Consequently, the states at the level N can be regarded as belonging to the symmetric

representation of SU(D), with N boxes in horizontal line of Young tableau

(22.18)

Each box (each phonon) can be one of D types. Its multiplicity is given by G(N,D), see

Appendix A.

23 The spectrum of the Hydrogen atom and SO(4)

symmetry

Another interesting application of group theory to quantum mechanics is the spectrum of

the bound hydrogen atom,

H =
p2

2m
− e2

r
. (23.1)

The n-th energy level is given by the famous Bohr spectrum,

En = − e2

2 rB n2
, rB ≡

~2

me2
, (23.2)
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furthermore the n-th level is

d(n) = n2 (23.3)

times degenerate. Even though, again, such a degeneracy is partially understood by the

SO(3) symmetry of the Hamiltonian, and from the fact that the orbital angular momentum

takes the values ` = 0, 1, . . . , n− 1, i.e.,

d(n) =
n−1∑
`=0

(2`+ 1) = n2 , (23.4)

the degeneracy among the states with different values of ` remains to be understood.

In order to gain more insight, we introduce the Lenz vector 27

A ≡ e2r

r
− ~

2m
(p× L− L× p)

=
r

r
− 1

2
(p× L− L× p) (23.5)

where in the second line the dimensional constants are all set to unity (e = ~ = m = 1).

L is the orbital angular momentum operators,

L ≡ r× p/~ , p = −i~∇ . (23.6)

It is a straightforward exercise to show that all components of A commute with the Hamil-

tonian

[A, H] = 0 . (23.7)

Naturally H commutes with the angular momentum operators

[L, H] = 0 , ... [L2, H] = 0 , (23.8)

but A and L do not commute,

[Li, Aj] = iεijkAk . (23.9)

In particular,

[L2, Aj] 6= 0 : (23.10)

This relation, together with (23.7), (23.8), implies further degeneracies among states in a

given Bohr level with different angular momenta.

The components Ai satisfy the commutation relations

[Ai, Aj] = −2iεijkHLk , (23.11)

27Historically, the Lenz vector was introduced in classical mechanics in the study of the planetary motion.
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and finally Li’s obey the known algebra

[Li, Lj] = iεijkLk . (23.12)

The algebras among Aj’s and Li’s, (23.9)-(23.12), are reminiscent of the so(4) algebra.

They in fact become isomorphic to the latter, if the operator factor H is replaced by

a number. That is, these algebras become identical to so(4), if considered among the

degenerate states of a Bohr level with a fixed energy:

H|n, `,m〉 = En|n, `,m〉 , En < 0 , H → En . (23.13)

Define then

u ≡ A√
−2En

; (23.14)

and

j1 ≡
L + u

2
; j2 ≡

L− u

2
. (23.15)

j1,2 satisfy indeed an su(2)× su(2) ∼ so(4) algebra

[j1 i, j1 j] = iεijkj1 k ; [j2 i, j2 j] = iεijkj2 k ; [j1 i, j2 j] = 0 . (23.16)

The irreducible representations of these algebras are well known:

|j1,m1〉, m1 = j1, j1 − 1, . . . ,−j1 ; (23.17)

|j2,m2〉, m2 = j2, j2 − 1, . . . ,−j2 , (23.18)

where

j1, j2 = 0,
1

2
, 1,

3

2
, . . . . (23.19)

Actually an important restriction on the allowed representations exists, as

L · u = 0 , (23.20)

that is,

j2
1 = j2

2 : (23.21)

only the multiplets with the same Casimir operator, j1 = j2 = j, are allowed.

Now a crucial passage in the discussion is the relation 28

A2 =
2H

m
(L2 + 1) + e4 , H =

p2

2m
− e2

r
, (23.22)

which can be proven by straightforward, albeit somewhat lengthy, manipulations, by re-

28The factors m and e are restored briefly here.
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peated use of the commutation relations among {Li, ri, pi}. The derivation is left for the

reader as an exercise. Setting again m = e = 1, one finds

L2 + u2 = −1− 1

2H
= −1− 1

2En
, (23.23)

where in the final passage we restricted ourselves to a particular Bohr level, H = En.

Finally one finds, by using (23.20) and this relation, that

j2
1 = j2

2 =
L2 + u2

4
=
−1− 1

2En

4
. (23.24)

The energy eigenvalues can be found by setting j2
1 = j2

2 = j(j + 1),

En = − 1

2(2j + 1)2
= − 1

2n2
, (23.25)

where

n = 2j + 1 = 1, 2, 3, . . . . (23.26)

By restoring all the dimensionful constants, one finds Bohr’s energy levels

En = − e2

2n2rB
, rB ≡

~2

me2
, n = 1, 2, 3, . . . , (23.27)

and the Comlomb degeneracy

(2j1 + 1)(2j2 + 1) = (2j + 1)2 = n2 . (23.28)

24 Wigner-Eckart theorem

A very important theorem that illustrates well the power of symmetry arguments in Quan-

tum Mechanics is due to Wigner and Eckart. Consider matrix elements

〈J,M ;n′|Tqp|j,m;n〉 , (24.1)

where |j,m〉 and |J,M〉 are two generic eigenstates of angular momentum (two su(2) ∼
so(3) representations), and n, n′ stand for all other quantum numbers (the radial quantum

number, type of particle, etc.). Tq
p is the q-th component of a spherical tensor operator of

rank p (see below).

The theorem:

〈J,M ;n′|Tqp|j,m;n〉 = 〈p, j; J,M |p, q, j,m〉〈J, n′‖Tp‖j, n〉 . (24.2)
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Namely these matrix elements are proportional to the CG coefficients. The proportionality

constant, indicated by 〈J, n′‖Tp‖j, n〉, called the reduced matrix element, depends only on

the absolute magnitude of the angular momenta, the rank of the spherical tensor, as well

as other quantum numbers, but not on the azimuthal quantum numbers, M, q,m. All the

dependence on the latter resides in the universal Clebsch–Gordan coefficients.

Equation (24.2) provides many nontrivial relations among those matrix elements which

differ only in the azimuthal quantum numbers M, q,m. In particular, it leads to a set

of selection rules: a necessary condition for a matrix element to be non-vanishing is that

the Clebsch–Gordan coefficient in (24.2) is not null. We talk about allowed transition, a

terminology borrowed from the analysis of electromagnetic transitions. When the reduced

matrix element is the same, the ratio between two matrix elements is simply given by

known CG coefficients, without any need of computation. More generally, many matrix

elements may be expressed in terms of a much smaller number of independent amplitudes

(the reduced matrix elements), and in terms of the known CG coefficients. This implies

that one can derive various nontrivial relations among the matrix elements, without need

of any calculations of the matrix elements themselves.

The spherical tensors are defined as follows. Under a three-dimensional rotation any

operator O transforms as follows:

O → eiω·ĴOe−iω·J (24.3)

while a state transforms like this:

| 〉 → eiω·Ĵ| 〉 . (24.4)

We have already seen that certain states—those with definite angular momentum (J,M)—

transform in a simple, universal way:

|J,M〉 → eiω·Ĵ|J,M〉 =
∑
M ′

DJ
M ′,M(ω) |J,M ′〉 . (24.5)

The rotation matrix for spin J , DJ
M ′,M(ω), is known once and for all: it depend only on J

and does not depend on any other attributes of the particular system considered. From the

group-theoretic point of view, DJ
M ′,M is an irreducible representation of the SO(3) (SU(2))

group.

Certain operators transform in simple manner. Operators such as r2, p2, U(r) are all

scalars: they are invariant under rotations; others, such as r, p, e J, are vectors. Quantities

transforming as products of vectors are generally known as tensors.

It turns out that it is convenient to reorganize the components of tensors so as to

make them proportional to the components of some spherical harmonics—they are known

as spherical tensors—rather than using Cartesian components. For instance, a spherical
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tensor of rank 1 is equivalent to a vector (Ax, Ay, Az), but its components are called T1,m,

m = 1, 0,−1, where

T1,1 = −Ax + iAy√
2

; T1,0 = Az; T1,−1 =
Ax − iAy√

2
. (24.6)

In the particular case of the position vector r, the corresponding spherical tensor compo-

nents are:

T1,1 = −x+ iy√
2

; T1,0 = z; T1,−1 =
x− iy√

2
. (24.7)

They are proportional to the spherical harmonics 29 Y1,1, Y1,0, e Y1,−1. The inverse of

eqn (24.7) is

Ax = −T1.1 − T1,−1√
2

; Ay = −i T1,1 + T1,−1√
2

; Az = T1,0 .

The components of a spherical tensor of rank 2 (of “spin 2”) are related to those in Cartesian

components as follows:

T2,0 = −
√

1

6
(Axx + Ayy − 2Azz) ;

T2,±1 = ∓(Axz ± iAyz) ;

T2,±2 =
1

2
(Axx − Ayy ± 2iAxy) .

The higher spherical tensors can be constructed by using the composition rule (12.55):

T PQ =
∑
q,q′

T pq T
p′

q′ 〈p, q; p
′, q′|p, p′, P,Q〉 . (24.8)

By construction the spherical tensor operator of rank (“spin”) p with 2p+1 components

transforms as:

Tq
p ⇒ eiω·Ĵ Tq

p e−iω·Ĵ =
∑
q′

Dp
q′ qT

p
q′ , (24.9)

just as a state with angular momentum |j, jz〉 = |p, q〉:

|p, q〉 ⇒ eiω·Ĵ |p, q〉 =
∑
q′

Dp
q′ q|p, q′〉 . (24.10)

This means that the action of Tq
p on the state |j,m;n〉 produces a state

Tq
p |j,m;n〉 , (24.11)

29In the convention used by Landau and Lifshitz Eqs. (24.6) and (24.7) are multiplied by a factor i.
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which transforms exactly as the direct product of two angular momentum eigenstates

|p, q〉 ⊗ |j,m〉 , (24.12)

because

Tq
p |j,m;n〉 ⇒ eiω·Ĵ Tq

p |j,m;n〉 = eiω·Ĵ Tq
p e−iω·Ĵ eiω·Ĵ |j,m;n〉

=
∑
q′,m′

Dp
q′ qD

j
m′m T

p
q′ |j,m

′;n〉 . (24.13)

This fact makes the WE theorem intuitively quite plausible.

To prepare for the proof, let us remember an angular momentum state |J,M〉 transforms

under a generic rotation as

|J,M〉 → U(ω)|J,M〉 =
∑
M ′

DJ
M ′,M(ω)|J,M ′〉 , U(ω) ≡ eiω·Ĵ (24.14)

where DJ
M ′,M(ω) is the rotation matrix (an irreducible representation of rank J). Now by

using a decomposition (12.55) on both sides. The l.h.s. gives

U(ω)|J,M〉 =
∑
m1,m2

U(ω)|j1,m1; j2,m2〉〈j1,m1; j2,m2|J,M〉

=
∑
m1,m2

∑
m′1,m

′
2

Dj1
m′1,m1

Dj2
m′2,m2

|j1,m
′
1; j2,m

′
2〉〈j1,m1; j2,m2|J,M〉 , (24.15)

whereas the r.h.s. of (24.14) yields∑
M ′

DJ
M ′,M(ω)

∑
m′1,m

′
2

|j1,m
′
1; j2,m

′
2〉〈j1,m

′
1; j2,m

′
2|J,M ′〉 . (24.16)

By comparing the coefficient of |j1,m′1; j2,m
′
2〉 (by using the orthonormality of the states)

in (24.15) and (24.16) one gets∑
m1,m2

Dj1
m′1,m1

Dj2
m′2,m2

〈j1,m1; j2,m2|J,M〉 =
∑
M ′

DJ
M ′,M(ω)〈j1,m

′
1; j2,m

′
2|J,M ′〉 . (24.17)

By using the completeness / orthogonality among the CG coefficients,∑
J,M

〈j1,m1; j2,m2|J,M〉〈J,M |j1, m̃1; j2, m̃2〉 = δm1m̃1δm2m̃2 (24.18)

one gets

Dj1
m′1,m1

Dj2
m′2,m2

=
∑

M ′,J,M

DJ
M ′,M(ω)〈j1,m

′
1; j2,m

′
2|J,M ′〉〈J,M |j1,m1; j2,m2〉 . (24.19)
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We now multiply both sides with (DJ
M̃ ′,M̃

(ω))∗, integrate over the SO(3) group, dg = dω =
1

8π2dφdθdψ in terms of the Euler angles (see Eq. (3.22)), and use the orthogonality theorem

(10.15) of the irreducible representations:∫
dω (DJ̃

M̃ ′,M̃
(ω))∗DJ

M ′,M(ω) =
1

2J + 1
δM̃ ′,M ′δM̃,MδJ̃ ,J , (24.20)

which gives∫
dω(DJ

M ′,M(ω))∗Dj1
m′1,m1

Dj2
m′2,m2

=
1

2J + 1
〈j1,m

′
1; j2,m

′
2|J,M ′〉〈J,M |j1,m1; j2,m2〉 .

(24.21)

We are now ready to prove the Wigner-Eckart theorem. By inserting

U †(ω)U(ω) = 1

twice, one gets

〈J,M ;n′|Tqp|j,m;n〉 = 〈J,M ;n′|U †(ω)U(ω)Tq
pU †(ω)U(ω)|j,m;n〉

=
∑

M ′,q′,m′

(DJ
M ′M(ω))∗Dp

q′q(ω)Dj
m′m(ω)〈J,M ′;n′|Tq′p|j,m′;n〉 . (24.22)

Now integrate the both sides over the group manifold
∫
dg =

∫
dω, noting that the left

hand side is independent of ω. By using the result (24.21) found above, we obtain

〈J,M ;n′|Tqp|j,m;n〉

=
1

2J + 1

∑
M ′,q′,m′

〈J,M ′;n′|Tq′p|j,m′;n〉〈p, q′; j,m′|J,M ′〉〈J,M |p, q; j,m〉 ,

which is nothing but the Wigner-Eckart theorem, Eq. (24.2), after identifying the factor

1

2J + 1

∑
M ′,q′,m′

〈J,M ′;n′|Tq′p|j,m′;n〉〈p, q′; j,m′|J,M ′〉 (24.23)

which does not depend on {M, q,m}, as the reduced matrix element and calling it

≡ 〈J, n′‖Tp‖j, n〉 . (24.24)
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A Counting the sets of nonnegative integers {ni}’s
giving a fixed N = n1 + n2 + . . . nD

Let G(N,D) be this number. This number obviously satisfies a recursion formula

G(N,D) =
N∑
n=0

G(N − n,D − 1) . (A.1)

Now define a generating function

F (D, t) ≡
∞∑
N=0

G(N,D) tN , 0 < t < 1 . (A.2)
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From the recursion formula for G(N,D) (A.1) one gets

F (D, t) =
∞∑
N=0

G(N,D) tN =
∞∑
N=0

N∑
n=0

G(N − n,D − 1) tN . (A.3)

By changing the summation indices from (N, n) to M ≡ N − n and n, which now run

independently from 0 to ∞, one gets

F (D, t) =
∞∑

M=0

∞∑
n=0

G(M,D − 1) tn+M =
F (D − 1, t)

1− t
. (A.4)

This is a recursion formula for F (D, t) in D. For D = 1 one has from G(N, 1) = 1

F (1, t) =
∞∑
N=0

tN =
1

1− t
. (A.5)

The solution of the recursion formula (A.4) is simply

F (D, t) =
1

(1− t)D
. (A.6)

The coefficient of tN in the Taylor expansion of F (D, t) is

G(N,D) =
(−D)(−D − 1) · · · (−D −N + 1)

N !
(−)N =

(
N +D − 1

N

)
=

(N +D − 1)!

N !(D − 1)!
,

(A.7)

which gives the degeneracy of the N -th energy level of isotropic D-dimensional harmonic

oscillator.
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