
182 Problems

Further reading

The reader interested in the mathematical aspects of the
theory can read the book [von Neumann (1932)]. A proof
of Stone’s theorem and von Neumann’s theorems can be

found in Vol. 1 of the book [Reed and Simon (1980a)],
Chapter 8. A pedagogical introduction to self-adjoint ex-
tensions is in [Bonneau, Faraut, and Valent (2001)].

Guide to the Supplements

One of the main postulates of quantum mechanics is that
each physical state corresponds to a ray in the Hilbert
space (P1) (see Section 7.1). Does the inverse statement,
“each vector in the Hilbert space describes a physical
state”, hold true as well? The question puts the superpo-
sition principle under scrutiny: given two physical states
|α〉, |β〉, is the state |α〉 + |β〉 also a physical state, for
whatever choice of |α〉 and |β〉? Supplement 20.14 is ded-
icated to the discussion of this subtle issue. The con-
clusion will be that the superposition principle actually
admits exceptions. A well-known example is related to
the exactly conserved electric charge. Only superposi-

tions among the states with the same electric charge are
allowed. An analogous restriction holds for the fermion
number. Superposition of states with different fermion
numbers is unphysical. These restrictions are known as
superselection rules.

In a second Supplement some details of the von Neu-
mann theorem are given. The theorem basically ensures
the uniqueness of the Schrödinger representation for the
Heisenberg commutation relations. Related questions on
the relevance of canonical transformations in quantum
mechanics and the problem of self-adjoint extensions of
the operators are briefly addressed.

Problems

(7.1) Solve the Heisenberg equations of motion for a free
particle and for a particle in an external uniform
field.

(7.2) Solve the Heisenberg equations of motion for a
harmonic oscillator in a uniform constant external
field. Generalize the solution for a uniform time
dependent force F (t).

(7.3) Suppose that the system described by the wave
function ψS(x) at the instant t = 0 is an eigenstate
of the operator f , with eigenvalue, f0. Show that
the wave function at time t is an eigenstate of the
Heisenberg operator f̂H(−t), with the same eigen-
value. (This technique is used in the book [Kogan
and Galitsky (1963)] to compute the Green func-
tions of several simple models).
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An elegant alternative formalism of quantum mechanics was given by
R. P. Feynman in 1948. The importance of this formalism, known as
the path integral, functional integral, etc. approach, first of all lies in its
vivid, intuitive description of quantum fluctuations. At the same time,
it provides us with a formidable tool of calculus, of both perturbative
effects (Feynman diagrams) and non-perturbative effects (e.g., tunnel
effects, instantons).

8.1 Green functions

An important concept in quantum mechanics is that of the (probability)
amplitude for two successive events; in particular, the (probability) am-
plitude for finding a particle at the point x at time t, knowing that the
particle was at x = x0 at some earlier instant t = t0. This amplitude is
called the Green function, and as will be seen below, it is precisely this
quantity the path integral is concerned with. Let us therefore review a
few elementary aspects of Green functions, before discussing the path
integral itself. In the cases in which the Hamiltonian is independent of
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time, the Green function is given by

G(x, x0; t, t0) = 〈x|e−iH(t−t0)/~|x0〉 . (8.1)

In other words the Green function is the time evolution operator, written
in the x representation.

From the very definition it follows immediately that the Green func-
tion possesses a fundamental property, i.e. the property of convolution,

G(x, x0; t, t0) =

∫
dx1G(x, x1; t, t1)G(x1, x0; t1, t0) , (8.2)

where x1 is the position occupied by the particle at any fixed interme-
diate time t1 (Figure 8.1). As G represents the amplitude for the two
successive events, the probability of (x0; t0) → (x; t) is the square of
G(x, x0; t, t0), and from eqn (8.2) we see that it contains various in-
terference terms coming from the contributions of differrent “paths”,
x0 → x1 → x, with all possible intermediate positions, x1.

The concept of the Green function is closely related to that of the
wave function. G can be interpreted as the wave function with the
special initial condition that the particle was a position eigenstate at
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the initial time: ψ(x, t0) = δ(x− x0). Indeed,

i~
∂

∂t
G(x, x0; t, t0) = i~

∂

∂t
〈x|e−iH(t−t0)/~|x0〉 = 〈x|He−iH(t−t0)/~ |x0〉

= HSch〈x|e−iH(t−t0)/~|x0〉 = HSchG(x, x0; t, t0) .

The probability of finding the particle in the interval (x, x+ dx) at time
t is then given by |G(x, x0; t, t0)|2dx.

For simplicity we briefly review the properties of the Green function
in one-dimensional systems. By definition the Green function G gives
the solution of the general problem of time evolution in a given system,
in the sense that the solution of Schrödinger’s equation for any initial
condition

ψ(x, t)|t=t0 = ψ0(x, t0),

is given by

ψ(x, t) =

∫
dx′G(x, x′; t, t0)ψ0(x

′, t0) , (8.3)

in terms of the Green function.11
Exercise. Show that ψ(x, t)

in eqn (8.3) indeed satisfies both
Schrödinger’s equation and the initial
condition.

The Green function (8.1) can be written, by inserting the completeness
relation in terms of the energy eigenstates,1 =

∑

n

|ψn〉〈ψn|

as
G(x, x0; t, t0) =

∑

n

e−iEn(t−t0)/~ ψn(x)ψ∗
n(x0) . (8.4)

232
Exercise. Show that the integral

in the last factor in eqn (8.5) can be
brought to the form of the ordinary
gaussian integration over the real axis,
by using Cauchy’s theorem.

3
Exercise. Evaluate the wave func-

tion at t > t0 of a particle, which at
time t0 is described by a wave packet,

ψ0(x, t0) =
1√

2πa2
e−x

2/4a2 .

In some simple cases the Green function can be evaluated explicitly.
For a free particle, by subsituting

En →
p2

2m
; ψn(x)→

1√
2π~

eipx/~;
∑

n

→
∫ ∞

−∞
dp

into (8.4), one finds that

G(x, x0; t, t0) =

∫ ∞

−∞

dp

2π~
e−ip

2(t−t0)/2m~eip(x−x0)/~

= eim(x−x0)
2/2~(t−t0)

∫ ∞

−∞

dp

2π~
exp−

[
i(t− t0)

2m~

(
p− m(x− x0)

t− t0

)2
]

=
1

2π~

√
2m~

i(t− t0)
eim(x−x0)

2/2~(t−t0)
(∫

C

dξ e−ξ
2

)
, (8.5)

where the contour of integration C in ξ is along the straight line (1 +
i)α; α = −∞→∞. The integral is equal to

√
π , so the result is

G(x, x0; t, t0) =

√
m

2i~π(t− t0)
eim (x−x0)

2/2~(t−t0) . (8.6)
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The harmonic oscillator

The harmonic oscillator

H =
P 2

2m
+

1

2
mω2Q2

is another system in which the Green function is known explicitly. It
can be explicitly evaluated by the path integral method; here we derive
the same result by making use of a theorem proposed as a problem in
Chapter 7. The Green function G(q, q0; t, 0) = 〈q|e−iH t/~|q0〉 is equal
to the wave function ψ(q, t) with a particular boundary condition

ψ(q, 0) = δ(q − q0), ... Qψ(q, 0) = q0 ψ(q, 0) . (8.7)

According to the theorem mentioned, ψ(q, t) satisfies the equation

Q(−t)ψ(q, t) =

(
Q cosωt− P

mω
sinωt

)
ψ(q, t) = q0 ψ(q, t) ,

where Q(t) is the Heisenberg position operator at time t; Q = Q(0), P =
P (0) are the ordinary Schrödinger operators, and the known solution of
Heisenberg’s equations for Q(t) has been used. Thus

i ~

mω
sinωt

∂

∂q
ψ(q, t) = (−q cosωt+ q0)ψ(q, t) :

and its solution is

ψ(q, t) = exp

[
imω (q cosωt− q0)2

~ sin 2ωt
+ c(t)

]
,

where c(t) is an integration constant, independent of q. To determine
it, we impose the condition

(
i~
∂

∂t
−H

)
ψ(q, t) = 0,

which yields a differential equation for ċ:

ċ(t) = −ω
2

cotωt− imω2

2 ~

q20
cos2 ωt

;

integrating it, one finds that

c(t) = −1

2
log(sinωt)− imω

2 ~
q20 tanωt+ const. ,

where the constant depends neither on t nor on q. Collecting the factors
and fixing the constant with boundary condition (8.7), we find that

GHO(q, q0; t, t0) (8.8)

=

√
mω

2πi~ sinω(t− t0)
exp

[
imω

~

(q2 + q20) cosω(t− t0)− 2 q0 q

2 sinω(t− t0)

]
.
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8.2 Path integrals

In the path integral formulation the Green function

〈q1|e−iH(T1−T0)/~|q0〉

is given by the expression
∫ q(T1)=q1

q(T0)=q0

[Dq] e i
~
S , S =

∫ T1

T0

dt L(q, q̇), (8.9)

where L(q, q̇) is the Lagrangian (S is the classical action).4 The symbol4“This formula contains in one all
of the three melodies of theoretical
physics of the 20th century: quanti-
zation, qymmetry and phase factor”,
C. N. Yang, Int. Conf. of Theoretical
Physics, TH2002, Paris (2002).

∫
[Dq] . . . will be defined in the following: its meaning is however quite

clear: the Green function is given by the sum over all possible paths
connecting the initial point q(T0) = q0 to the final point q(T1) = q1,
each weighed with the factor eiS/~, where S is the classical action cor-
responding to each path (see Figure 8.9). Without entering into the
details, one notes several salient features:

• The “virtual paths” introduced in the Lagrangian formalism of
classical mechanics with the minimal action principle appear here
as real paths: in quantum mechanics all trajectories—whether or
not they satisfy the classical equation of motion—contribute, each
with weight eiS/~. The fact that the electron “sees” both of the
double slits (see Chapter 1) simultaneously, a rather counterintu-
itive fact, is here expressed in a very natural way.

• The sum over different paths is in the amplitude; contributions
from different paths interfere nontrivially in the probability for a
given event. This is of course a well-known, characteristic aspect
of quantum mechanics.

• In the limit ~ → 0, only the stationary path for which δS = 0
contributes: the contributions of non-stationary paths cancel out
due to the rapid phase oscillations. We thus recover the minimal
principle of classical mechanics in the limit ~→ 0, as required.

T1

q

T0

q q0

1

t

Fig. 8.2

8.2.1 Derivation

To derive eqn (8.9), we start by dividing the time interval [T1, T0] into
many tiny segments:

tN = T1 > tN−1 > tN−2 > . . . t2 > t1 > t0 = T0,

ti − ti−1 = ǫ, N ǫ = T1 − T0 .

The evolution operator can be factorized as

e−iH (T1−T0)/~ = e−iH ǫ/~ e−iH ǫ/~ . . . e−iH ǫ/~ .

Inserting the completeness relation
∑

qi

|qi〉〈qi| = 1
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into each time slice, one gets

G(q, q0;T1, T0) =

∫ ∏

i

dqi
∏

i

Gi+1,i(qi+1, qi; ti+1, ti),

where

Gi+1,i = 〈qi+1|e−iH ǫ/~|qi〉 ≃ 〈qi+1|1− iH ǫ/~ + . . . |qi〉 .

For a Hamiltonian of the form, H = p2

2m + V (q), it follows that

〈qi+1|H |qi〉 = 〈qi+1|
p2

2m
+ V (q)|qi〉 =

∫
dp 〈qi+1|p〉 〈p|

p2

2m
+ V (q)|qi〉

=

∫
dp

2π~
eip(qi+1−qi)/~

(
p2

2m
+ V (qi)

)
=

∫
dp

2π~
eip∆q/~

(
p2

2m
+ V (qi)

)
.

Thus

Gi+1,i ≃
∫

dp

2π~
eip∆q/~

(
1− iH(p, qi)ǫ

~
+ . . .

)
=

∫
dp

2π~
eip∆q/~−iǫH/~ .

Collecting the factors one finds that5 5Feynman’s inspiration came from
some observations made by Dirac. In
fact all the basic ideas about the path
integral can be already found in a some-
what mysterious §32 of Dirac’s book
[Dirac (1958)].

G(q, q0;T1, T0) = lim
N→∞

∫ ∏ dqi dpi
2π~

e
i

P

i

h

pi(qi+1−qi)

~
−H(pi,qi)

i

.

Finally, performing the integration over pi,

Gi+1,i =

∫
dp

2π~
eip∆q/~−iǫp2/2m~−iǫV (qi)/~

= const. eiǫm(∆q/ǫ)2/2−iǫV (qi)/~ = ei ǫ L(qi,q̇i)/~ ,

where we have written

L(qi, q̇i) =
m

2

(
∆q

ǫ

)2

− V (qi) ≃
m (q̇)2

2
− V (qi) .

Thus

G(q, q0;T1, T0) = lim
N→∞; ǫ→0

∫ ∏
dqi e

i
P

i ǫ L(qi,q̇i)/~ ≡
∫

[Dq] eiS/~ .

Remarks. The reader with a tendency for mathematical rigor might
be appalled to see the omnipresent symbol ≃ and the limit with infinite-
dimensional integrals taken with nonchalance. Actually, the derivation
can be made rigorous. First of all, we consider the Euclidean time, i.e.,
a continuation t = −itE , which makes all the integrals of Gaussian type,

i S → −SE, SE =

∫
dtE

[(
dq(tE)

dtE

)2

+ V (q(tE))

]
.

As for the infinite product, the convergence of the limit (Trotter’s for-
mula)

lim
N→∞

(
e−(T+V )/N

)N
= lim

N→∞

(
e−T/N e−V/N

)N

can be proved for any self-adjoint operators (see Section 7.3.1) T, V .
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The convolution property of the path integral

∫ q(T1)=q1

q(T0)=q0

[Dq] e i
~
S =

∫
dq

[∫ q(T1)=q1

q(t)=q

[Dq] e i
~
S

] [∫ q(t)=q

q(T0)=q0

[Dq] e i
~
S

]

(valid for any fixed t, T1 > t > T0) follows immediately from the very
definition of the path integral. In agreement with the general principles
of quantum mechanics, the amplitude for the particle at q0 initially (t =
T0) to travel to q1 at time t = T1, is a coherent sum of the amplitudes
for the particle traveling first from q0 to q, then from q to q1, summed
over the intermediate position q.

The amplitude studied above can also be written as a matrix element
between two Heisenberg states,

G(q1, q0;T1, T0) =H 〈q1, T1|q0, T0〉H ,

where |q1, t〉H = eiHt/~|q1〉 is an eigenstate of the Heisenberg operator66As this point might be confusing,
let us remind the reader that the
state |q1, t〉H is not the same as the
Schrödinger state at time t, which is
e−iHt/~ |q1〉; the latter is certainly not
an eigenstate of any postition operator.
On the contrary, |q1, t〉H is an eigen-
state of QH(t) with eigenvalue q1.

QH(t) = eiHtQe−iHt, QH(t) |q1, t〉H = q1 |q1, t〉H .

The states without suffix H stands for the position eigenstates of the
standard Schrödinger operatorQ. Let us now consider a matrix element,

H〈q1, T1|QH(t)|q0, T0〉H = 〈q1|e−iH(T1−t)/~ Qe−iH(t−T0)/~|q0〉

=

∫
dq 〈q1|e−iH(T1−t)/~|q〉 q 〈q|e−iH(t−T0)/~|q0〉 ;

calculating it between the time intervals [T1, t] and [t, T0] as above, one
finds that

H〈q1, T1|QH(t)|q0, T0〉H =

∫
[Dq] q(t) e i

~

R T1
T0

L ;

analogously, one finds for t1 > t2

H〈q1, T1|QH(t1)QH(t2) |q0, T0〉H =

∫
[Dq] q(t1) q(t2) e

i
~

R T1
T0

L ;

and so on. In general, we find a remarkable result,

∫
[Dq] q(t1) q(t2) . . . q(tn) e

i
~

R T1
T0

L

= H〈q1, T1|T {QH(t1)QH(t2) . . . QH(tn)} |q0, T0〉H ,

where the chronological product T {. . .} is defined as

T {QH(t1)QH(t2)QH(t3)} =

{
QH(t1)QH(t2)QH(t3) if t1 > t2 > t3;

QH(t2)QH(t3)QH(t1) if t2 > t3 > t1;
,

(8.10)
etc.
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We further modify the Lagrangian by introducing a “source term”
J(t), as

L→ L+ J(t) q(t) .

If one assumes that the source is non-vanishing only during the time
interval between t and t′,

T1 > t′ > t > T0,

then the Green function (path integral) in the presence of such a source
term

W (J) =

∫
[Dq] e i

~

R

(L+J q)

is equal to

H〈q1, T1|q0, T0〉{J}H =

∫
dq′dqH〈q1, T1|q′, t′〉HH〈q′, t′|q, t〉{J}H H〈q, t|q0, T0〉H .

We now let -3 -2 -1 1 2 3
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Fig. 8.3 The ground state |ψ|2
computed with the Feynman path
integral for the harmonic oscillator

and a double well potential; see
NB-8.1, NB-8.2.

T1 → −i∞, T0 → +i∞.
By inserting a completeness relation constructed with the energy eigen-
states, we have

H〈q, t|q0, T0〉H = 〈q|e−iH(t−T0)/~|q0〉 =
∑
n φn(q)φn ∗(q0) e−iEn(t−T0)/~

T0→+i∞−−−−−−→ φ0(q)φ
∗
0(q0) e

−iE0(t−T0)/~ , (8.11)

i.e., in this limit the sum is dominated by a single term. In other words
the path integral becomes proportional to the “vacuum to vacuum” am-
plitude (i.e., ground state to ground state). This important result is
known as Feynman’s theorem.

In analogy to the ordinary derivative, a “functional derivative” can be
defined as

δ

δJ(t)
J(t′) = δ(t− t′).

Then (T1 → −i∞, T0 → +i∞)

δnW (J)

δJ(t1)δJ(t2) . . . δJ(tn)

∣∣∣∣
J=0

= 〈0|T {QH(t1)QH(t2) . . . QH(tn)}|0〉 . (8.12)

In other words, W (J) acts as the generating functional for the n-point
correlation functions.

The generalization of the path integral to systems with s variables is
immediate:

G({q1}, {q0};T1, T0) = 〈{q1}|e−iH(T1−T0)/~|{q0}〉
=

∫ ∏

n

Dq(n) ei
i
~

R T1
T0

L(q(n)(t),q̇(n)(t)) .

Systems with infinite degrees of freedom (quantum fields) can be found
as a limit of the multiple degrees of freedom. In quantum field theo-
ries the analogues of quantity (8.12) are the so-called causal correlation
functions (the propagator and n-point functions). (See Section 17.2.)
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Important identities can be found by considering the functional change
of variables,

q(t)→ q(t) + δq(t) .

To start with, consider a general path integral with an “argument” G[q],

〈G[q]〉 =

∫
[Dq]G[q(t)] e

i
~
S ,

where G[q] is a generic function (or a functional) of q(t). Applying a
change of variable, one has

〈
δG

δq(t)
− i

~
G[q(t)]

δS

δq(t)

〉
= 0 .

By using such identities with various choices for G[q] it is possible to
reproduce known theorems such as Ehrenfest’s theorem, the virial theo-
rem, and so on. It is quite curious that the relation corresponding to the
fundamental commutator in the usual operator formalism of quantum
mechanics [q̂, p̂] = i ~ emerges this way (with F (q) = qi).

8.2.2 Mode expansion

Two particular advantages of the path integral method are the following.
First, the ease with which perturbative contributions (Chapter 9) can
be organized in a diagrammatic fashion (Feynman graphs), which makes
the concrete task of calculations much simpler, especially in complex
systems with many degrees of freedom. Second, certain non-perturbative
effects (tunnel effects) are elegantly captured by solutions of the classical
equation of motion analytically continued to the Euclidean time. These
solutions play the role of a sort of functional saddle point.

By going to the Euclidean time,

t→ t = −iτ,

the factor eiS becomes

e
i

R

dt
h

m
2 ( dq

dt )
2−V (q)

i

→ e
−

R

dτ
h

m
2 ( dq

dτ )2
+V (q)

i

= e−SE ,

where the Euclidean action is defined as

SE =

∫
dτ

[
m

2

(
dq

dτ

)2

+ V (q)

]
=

∫
dτ LE(q, q̇) :

it describes the motion of the particle in the potential −V (q). The
generating functional in the presence of the source term is

WE(J) =

∫
Dq e−

R

dτ [LE(q,q̇)−J·q],

and

1

W (J)

δnW

δJ(t1) . . . δJ(tn)

∣∣∣∣
J=0

= in
1

WE(J)

δnWE

δJ(τ1) . . . δJ(τn)

∣∣∣∣
J=0,τi=iti

.
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This last relation tells us how to retrieve the results for the n-point
function in standard real time (Minkowski time), after the calculations
have been done in the Euclidean-time formalism.

For the harmonic oscillator, V (q) = ω2

2 q2, and in the Euclidean time
Lagrangian is (by setting m = 1)

LE =
q̇2

2
+
ω2

2
q2 .

Once the path integral

〈q1| e−H τ |q0〉 = N
∫
Dq e−SE , (8.13)

SE =

∫ τ0/2

−τ0/2

(
q̇2

2
+
ω2

2
q2
)
,

is calculated, the ground-state energy can be computed by studying its
behavior at τ0 →∞,

〈q1| e−H τ |q0〉 ≃ e−E0 τ ψ0(q1)ψ0(q0)
∗ . (8.14)

In more general cases, with the potential containing the cubic or higher
powers of q, we write

SE =

∫
dτ [q(τ)Â(τ)q(τ) + Vint(q(τ))],

where Â(τ) = − 1
2
d2

d τ2 + 1
2ω

2 is the quadratic part of the (Euclidean)
Lagrangian; the remaining part Vint = λ q(τ)3 + η q(τ)4 + . . . represents
the interactions. By introducing a complete set of eigenfunctions of the
operator Â:

Â(τ) fk(τ) = ǫk fk(τ),

∫
dτ f∗

k (τ)fℓ(τ) = δk ℓ, (8.15)

and by defining

[Dq] ≡
∏

k

dck, q(t) =
∑

k

ck fk(τ), (8.16)

the functional integration reduces to the ordinary integrals over the co-
efficients of the mode expansion,

∏
k dck. The quadratic part gives

∫
[Dq] e−q·Â·q =

∏

k

ǫ
−1/2
k = (det Â)−1/2; (8.17)

the interaction part can be treated perturbatively, by introducing the
source term, and writing things concisely:7 7Equation (8.18) is the key formula.

∫
[Dq] e−q·Â·q−J·q−V (q) = e−V (− δ

δJ )
∫

[Dq] e−q·Â·q−J·q (8.18)

= e−V (− δ
δJ ) eJ·Â

−1·J/4 (det Â)−1/2 .
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where

J · Â−1 · J ≡
∫
dτ1 dτ2

∫ ∫
J(τ1)D(τ1 − τ2)J(τ2), (8.19)

D(τ1 − τ2) ≡ Â−1
τ1,τ2 , etc.

Equation (8.18) is the key formula both for the standard perturbation
theory, i.e., computation of the fluctuations about the trivial minimum
(in which case ω(t) = ω = const.), as well as for the evaluation of
non-perturbative effects, i.e., determination of the effects due to some
nontrivial classical minima q(t) = q(cl)(t) and to the fluctuations around
it.

8.2.3 Feynman graphs

In order to get an expansion in the interaction potentials, let us first
determine the value of the functional integral (8.13) for the harmonic
oscillator, with q0 = q1 = 0 (with Scl = 0), and without the interaction
and source term (Vint = J = 0). It is formally equal to

(det Â)−1/2, A = − d2

dτ2
+ ω2,

which we shall now compute explicitly. In this case, the “classical so-
lution” in the inverted oscillator potential is just the trivial solution,
q(τ) = 0, ∀τ . (Figure 8.4). As the fluctuations must vanish at τ = ±T2 ,

Fig. 8.4
the problem of finding the eigenvalues of the operator A is identical to
the simple quantum mechanical problem of a particle in an infinitely
deep well at x = ±T2 :

(
− d2

dτ2
+ ω2

)
fn = ǫn fn, (8.20)

fn

(
T

2

)
= fn

(
−T

2

)
= 0,

which has solutions (Section 3.3.1)

ǫn − ω2 =
π2 n2

T 2
≡ λ2

n; fn(τ) = An sinλn

(
τ +

T

2

)
.

By expanding
δq(τ) =

∑

n

cn fn(τ),

and using the orthonormality of the eigenfunctions fk,

SE =

∫
dτ δq(τ)Aδq(τ) =

∑

n

c2n ǫn,

we find that

N
∫
Dq(τ)e−SE = N e−Scl

∫ ∏

n

dcn e
−c2n ǫn

=

[
N
∫
Dq(τ)e−SE

]

ω=0

∏

n

(
1 +

ω2 T 2

π2 n2

)−1/2

.
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The part we factorized corresponds to the propagation of the free parti-
cle, so (with Euclidean time and with m = ~ = 1)

N
∫
Dq(τ)e−SE |ω=0 = 〈0|e−p2T/2|0〉 = 1√

2πT
,

(see eqn (8.6)). The “correction” factor is determined by using the
formula ∞∏

n=1

(
1 +

z2

n2

)
=

sinhπz

πz

to be
∞∏

n=1

(
1 +

ω2 T 2

π2 n2

)−1/2

=

(
sinhω T

ω T

)−1/2

.

Thus the sum over fluctuations (paths) gives

〈0| e−H τ |0〉 = N
∫
Dq e−SE =

√
ω

2π
sinh−1/2 ω T . (8.21)

This, of course, agrees with eqn (8.8), after setting q1 = q0 = 0 and
going to the Euclidean time. Equation (8.21) yields in the limit T →∞,

〈0| e−H τ |0〉 →
√
ω

π
e−ωT/2,

and gives, in view of eqn (8.14), E0 = ω
2 , ψ(0) = (ωπ )1/4, in agreement

with what was obtained by solving Schrödinger’s equation (Section 3.4).
Next we note that the propagator Â−1 in eqn (8.18) is explicitly given

by

Â−1 ≡ D(τ1 − τ2) =
1

2ω
e−ω|τ1−τ2| . (8.22)

To obtain it, first make a Fourier transform to the energy space

q(τ) =

∫ ∞

−∞

dE

2π
e−iEτ q̃(E) ,

in which the operator Â is equal to E2 +ω2. The inverse is thus 1/(E2+
ω2) and Â−1 is given by the inverse Fourier transform,

Â−1 ≡ D(τ1 − τ2) =

∫ ∞

−∞

dE

2π

1

E2 + ω2
e−iE(τ1−τ2) . (8.23)

We leave it as an exercise to work out the integration by using the
residues theorem, to get eqn (8.22). The propagator is just the two-point
correlation function in the free theory (Vint = 0), as it corresponds to
the second derivative with respect to the source function.

To get a taste of how things work, let us consider the case of the the
cubic potential, V = λ q3(τ), that is, the system

H =
p2

2
+
ω2

2
q2 + λ q3
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(we set m = ~ = 1) and we are going to calculate the corrections to the
ground-state energy ω

2 due to the cubic interactions. The strategy is to
compute the path integral (8.18) by setting J = 0, after an appropriate
number of derivatives δ/δJ are taken to extract the desired powers of
λ, and then to use Feynman’s theorem, (8.11). The potential enters eqn
(8.18) through

e
−λ

R

dτ δ3

δJ(τ)3 = 1−λ
∫
dτ

δ3

δJ(τ)3
+
λ2

2!

∫
dτ

δ3

δJ(τ)3

∫
dτ ′

δ3

δJ(τ ′)3
+. . . .

To the order λ2 for instance, we have

λ2

2!

∫

τ

δ3

δJ3

∫

τ ′

δ3

δJ3

1

3!

(∫

1

∫

2

JDJ

2

)(∫

3

∫

4

JDJ

2

)(∫

5

∫

6

JDJ

2

)
.

With the use of the functional derivatives, various contributions arise.
For instance if three derivatives in δ3/δJ3(τ) act on J ’s inside three
different parentheses, the result would be proportional to

∫ ∫
(Dτ,τ ′)3 =

∫
dτ

∫
dτ ′

e−3ω|τ−τ ′|

(2ω)3
=

T

12ω4
, (8.24)

where T is the total time interval. But the same contribution arises
many times as the derivatives δ3/δJ3(τ) and δ3/δJ3(τ ′) are distributed
in the three groups: taking into account the factorials in the expansion
and the combinatoric factor, the above contribution gets multiplied by

λ2

2!

1

3!
3! 3! = 3λ2 .

Another type of contribution occurs when two of the derivatives in
δ3/δJ3(τ) act on two J ’s inside a parenthesis. Necessarily the same
occurs for the derivatives in δ3/δJ3(τ ′). In this case the result is

∫ ∫
Dτ,τDτ,τ ′Dτ ′,τ ′ =

∫
dτ

∫
dτ ′

e−ω|τ−τ
′|

(2ω)3
=

T

4ω4
. (8.25)

The combinatorics for this case is a little more tricky: it is

λ2

2!

1

3!

3!

2
3!

3!

2
=

9λ2

2
,

which multiplies the above contribution. The total contribution to this
order is equal to

11T

8ω4
.

This kind of calculation can be pushed to higher orders, but obviously
the counting will very quickly become cumbersome. The elegant obser-
vation due to Feynman which makes life considerably easier is that these
contributions can be reorganized diagrammatically. Indeed, one has a
simple set of rules (Feynman’s rules):

(i) Each vertex (Figure 8.5) gives a factor −λ .
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(ii) Each propagator gives D(τ1 − τ2) (Figure 8.6) .

(iii) For a given number of vertices (to a given order in λ), draw all
graphs combining vertices and propagators.

(iv) Integrate over all τ ’s (interaction time).

(v) Insert a factor 1/n! if there are n identical vertices.

(vi) Count how many times a given graph arises.
-  λ

Fig. 8.5

τ τ1 2

e
-ω τ1-τ

2

2 ω

Fig. 8.6

A

B

Fig. 8.7

Thus to the second-order contribution in λ considered above in the
system with a cubic potential, there are two graphs A and B of Figure 8.7
contributing to the “vacuum-to-vacuum” amplitude. Their combinato-
rial factors (i.e., in how many ways the given graph can be formed)
are

3 · 3 = 9, 3 · 2 = 6,

for the graphs A and B, respectively, while the value of the graphs is
easily seen to be equal to eqns (8.24) and (8.25).

To sew things up and to apply Feynman’s theorem, there is one more
step needed. As we are really looking for the correction proportional
to λ2 in the ground-state energy, which appears in the exponent of the
functional integral we are computing,

〈q1| e−H T |q0〉 ≃ e−E0 T ψ0(q1)ψ0(q0)
∗ ,

we must exponentiate the contribution we have just computed:

1 + (A+B) +
1

2!
(A+B) · (A+B) + . . . = eA+B .

More precisely we are to calculate the vacuum-to-vacuum amplitude to
all orders in λ, however keeping only those graphs in which the connected
part (let us call Σ) consists of the second-order contributions only. Thus
the path integral has been computed to be

W |J=0 =

√
ω

2π
sinh−1/2 ω T e11λ

2T/8ω2 ≃ e−(ω/2−11λ2/8ω2)T ,

so that

E0 =
ω

2
− 11λ2

8ω2
+ . . .

where . . . indicates the corrections to higher orders in λ. This result
coincides with the one found by using standard perturbation theory,
developed in the next chapter (Section 9.1).

In the case of the quartic potential,

H =
p2

2
+
ω2

2
q2 + g q4,

the only difference to the previous case is the vertex, see Figure 8.8. In
this case, there is a vacuum-to-vacuum graph already at the first order,
Figure 8.9, given by

−g 4 · 3
2

1

2

∫
e−2ω|τ−τ |

(2ω)2
= − 3

4

T

ω2
.
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To the second order, we find the two graphs shown in Figure 8.10, which
sum up to yield

21

8

T

ω5
.

The correction to the ground-state energy is thus

E0 =
ω

2
+

3

4

g

ω2
− 21

8

g2

ω5
+ . . . ,

which again, of course, agrees with the result of standard perturbation
theory.

-  g

Fig. 8.8

Fig. 8.9

Fig. 8.10

Remarks

• Feynman’s rules and graphs (diagrams) can be easily generalized
to cases with more than one degree of freedom, and in fact to the
case of infinite degrees of freedom (quantum field theory).

• A great advantage of the diagrammatic method is that the organi-
zation of the various contributions, in particular, the combinatorial
factors, are identical in quantum mechanics considered here and
in quantum field theory in any dimensions; the only difference is
in the propagator (8.23), which is replaced by

D(xµ1 − xµ2 ) =

∫
dDp

(2π)D
eip·(x1−x2)

p2 +m2
,

where the mass of a propagating particle replaces ω of a quantum
mechanical oscillator. Also the internal “loop” momenta (Fourier
conjugate of the relative positions of the two vertices connected by
the propagator) become D-dimensional.

• The power of the path integral formulation is truly appreciated
when one faces much more complex problems such as relativistic
quantum field theories or statistical mechanics (theories of infinite
degrees of freedom). To try to solve a simple quantum mechanical
problem with this method is a little like trying to crush a nut with
a hydraulic press, not always the smartest thing to do.

• In the problems of elementary particle physics—relativistic quan-
tum field theories—the fact that the formalism is intrinsically rel-
ativistic (the Lagrangian density which plays the central role in
this formalism is a Lorenz-invariant quantity, while the Hamilto-
nian density is not), is a great advantage.

• From the formal point of view, the path integral with configu-
rations {q} periodic (and summed over) in Euclidean time (call
T = β), ∑

q

〈q|e−βH |q〉 = Tr e−βH

can be interpreted as the partition function of statistical mechan-
ics, with β ≡ 1/k T , with T standing now for the temperature.
This simple observation is at the basis of an enormously rich
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(and successful) fields of research, encompassing condensed matter
physics (phase transitions and critical phenomena) on the one hand
and quantum field theories and elementary particle physics, on the
other [Zinn-Justin (1989)]. Two fields have been enriched by mu-
tual exportation of the techniques and theoretical concepts (even
some physicists themselves!), such as the renormalization group,
universality, scaling, phase structures of the systems, duality, and
so on and so forth.

8.2.4 Back to ordinary (Minkowski) time

The continuation back to the ordinary, real time description must be
done with some care. We shall choose to rotate back the time variable
as

t = −iτ −→ t real,

90 degrees anti-clockwise, while at the same time

E = iE −→ E real,

by rotating 90 degrees in the clockwise direction. See Figure 8.11. This

t

E

Fig. 8.11
choice is dictated by the particular type of correlation functions we are
interested in. Indeed, the propagator (8.23) is continued back to

DM (t1 − t2) = −i
∫ ∞

−∞

dE

2π

1

E2 − ω2 + iǫ
e−iE(τ1−τ2) , (8.26)

where +iǫ in the denominator indicates that the singularity at ±ω must
be avoided by shifting them slightly off the real axis, ±(ω − iǫ). By
picking up the appropriate residues for t1 − t2 > 0 or t1 − t2 < 0, one
finds the propagator

DM (t1 − t2) =

{
−e−iω(t1−t2)/2ω, t1 > t2;

−eiω(t1−t2)/2ω, t1 < t2 .

As the two-point correlation function in general has the form, e.g., for
t1 > t2 (see eqn (8.10))

DM (t1 − t2) = 〈0|T (Q(t1)Q(t2))|0〉
=
∑

n

〈0|Q(t1)|n〉 〈n|Q(t2)|0〉 =
∑

n

e−iEn(t1−t2)/~|〈0|Q|n〉|2 ,

and analogously

DM (t1 − t2) =
∑

n

e+iEn(t1−t2)/~|〈0|Q|n〉|2 , t1 < t2 ,

we see that DM (t) represents the causal propagator: only the positive
(negative) energy states propagate in the future (past) direction.

A similar reasoning explains the form of the causal (Feynman) prop-
agator of a scalar particle in Minkowski spacetime,

DM (xµ1 − xµ2 ) = i

∫
dDp

(2π)D
eip·x

p2 −m2 + iǫ
,

with the so-called iǫ prescription.
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8.2.5 Tunnel effects and instantons

As an example of the application of the path integral to non-perturbative
effects in quantum mechanics (e.g., tunnel effects) consider a double-well
potential,

H =
p2

2m
+ V (q), V (q) = λ (q2 − η2)2 , (8.27)

shown in Figure 8.12. We know from the standard considerations based
on Schrödinger’s equation that the ground state of the system is a sym-
metric combination of the approximate ground state of the two wells, the
first excited state antisymmetric combination thereof, and the splitting
of the two levels is characterized by the tunneling amplitude between
the two wells,

∆E± ∼ e−
1
~

R

|p| dq .

(For a more detailed discussion based on the semi-classical approxima-
tion see Section 11.1). In this section we are going to analyze the problem
by making use of the “sum-over-paths” approach.

Fig. 8.12
We are mainly interested in studying the amplitudes

〈η|e−HT |−η〉 =
∫ q(T/2)=η

q(−T/2)=−η
Dq e−SE ; (8.28)

〈−η|e−HT |−η〉 =

∫ q(T/2)=−η

q(−T/2)=−η
Dq e−SE ; (8.29)

and similar ones with η ↔ −η, where SE is the Euclidean action

Fig. 8.13

SE =

∫
dτ
(m

2
q̇2 + V (q)

)
.

Note that near the bottom of each well the potential looks like a har-
monic oscillator with

V ′′(q)|η = 8λ η2 ≡ mω2, ω =

√
8λ η2

m
;

while the barrier height is

V (0) = λ η4 =
m2 ω4

64λ
≫ ω, if

m2 ω3

λ
≫ 1 .

Let us first consider the amplitude (8.29) for the particle traveling
from −η to η during the time T . The (functional) stationary point of
SE is given by the solution of the Euclidean equation of motion

δSE
δq

= −m q̈ +
dV

dq
= 0 .

Note that this describes a particle moving in the potential −V (q) (Fig-
ure 8.13). The desired solution, satisfying the boundary condition q(−T/2) =
−η, q(T/2) = η, is clearly a solution in which the particle, staying for
a long time near q(−T/2) = −η, moves quickly through the central
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ditch and approaches asymptotically towards q(T/2) = η. Such a so-
lution in the Euclidean equation of motion is known as an instanton.
(Figure 8.14).

In the case of the concrete model (8.27), the instanton solution is given
by (for large T )

q(class)(τ) = q(inst)(τ) = η tanh
ω

2
(τ − τ0) , (8.30)

where τ0, the center of the instanton, is arbitrary. It is clear from clas-

Fig. 8.14
sical mechanics that an analogous solution always exists for a particle
moving in a potential with the same general characteristics as in Fig-
ure 8.13, even though the detailed dependence on τ will depend on the
potential. The classical instanton action can be expressed as follows.

-15 -10 -5 5 10 15
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Fig. 8.15

By integrating the equation of motion, one gets

m

2

(
dq

dτ

)2

− V (q) = E = 0,

where we used the boundary condition to fix the value of the energy.
This gives

dq

dτ
=

√
2V (q)

m
,

and thus (by using the virial theorem)

S
(inst)
E =

∫
dτ
[m

2
q̇2 + V (q)

]
=

∫
dτ m q̇2

=

∫ η

−η
dq
√

2mV (q) =

∫ η

−η
dq |p| (8.31)

which is the well-known reduced action for the tunneling amplitude. In
the specific case of the quartic potential (8.27) we find S

(inst)
E = ω3/12λ.

We now expand q(τ) around the instanton solution

q(τ) = q(class)(τ) + δq(τ),

SE = S
(inst)
E +

1

2

∫
dτ δq(τ)

[
−m d2

dτ2
+ V ′′(q(inst)(τ))

]
δq(τ) + . . . ;

by integrating over the fluctuations δq we formally get

∫
Dq e−SE = N e−S

(inst)
E det

[
−m d2

dτ2
+ V ′′(q(inst))

]−1/2

.

But there are problems. First, as the classical solution (8.30) contains
a free parameter x0 and as the action SE does not depend on it, among
the fluctuations around that solution there must be those correspond-
ing to simple translations in the time direction, which do not require
extra action. There will therefore be a zero eigenvalue among the mode
expansion associated with the quadratic operator

[
−m d2

dτ2
+ V ′′(q(inst)(τ))

]
ξn(τ) = ǫn ξn,
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(cf. eqn (8.20)) with ǫ0 = 0, and this makes the factor det[· · · ]−1/2

meaningless. Also, in view of the fact that there are other instanton
solutions in which the center is shifted, it is clear that contributions
from these solutions (many saddle points) must be somehow summed
up to get a sensible answer.

These two points are of course intimately related, and indeed the
solution to both problems is given by the following (standard) trick.
The idea is to explicitly extract the zero mode, corresponding to the
translation in time,

dq(class)(τ) =
dq(class)(τ)

dτ0
dτ0 ≡ dc0 ξ0(τ),

where ξ0 is the normalized zero mode function8

8The normalization of the zero mode
is known from an integral appearing in
eqn (8.31).

ξ0(τ) =

(
S

(inst)
E

m

)−1/2
dq(class)(τ)

dτ
,

and therefore

dc0 = (2π~)1/2

(
S

(inst)
E

m

)1/2

dτ0 .

Namely we traded the part of the (functional) integration over a par-
ticular fluctuation mode with an ordinary integration over the center of
the instanton! This type of manipulation is known as the method of col-
lective coordinates (of which τ0 is an example). The functional integral
is defined as9

9This kind of theoretical tool is used
in studying solitons, kinks, vortices,
etc. which are various finite-energy
solutions of non-linear field equations,
appearing in diverse fields of physics,
from optics, solid state physics, fluid
dynamics, superconductivity, and par-
ticle physics to cosmology. Dq ≡ dc0

(2π~)1/2

∏

n6=0

dcn
(2π~)1/2

=

(
S

(inst)
E

m

)1/2

dτ0
∏

n6=0

dcn
(2π~)1/2

.

The integration around an instanton solution then gives a contribution

∫
Dq e−SE = (2π~)1/2

(
S

(inst)
E

m

)1/2

T
′

det

[
−m d2

dτ2
+ V ′′(q(inst))

]−1/2

,

where the prime on the determinant indicates that the product is over
the nonzero eigenvalues only. By normalizing it to the determinant in
the case of the oscillator (V = 0), (8.21), we write

N
′

det

[
−m d2

dτ2
+ V ′′(q(inst))

]−1/2

=

√
mω

π~
e−ωT/2K ,

where K is the ratio of the quadratic fluctuations around the instanton
and those around the trivial solution q(class) = 0. We shall not be
concerned here with the computation of K, although in the case of the
concrete model (8.27) the calculation can be carried through and gives

K = ω

√
6S

(inst)
E /π~.
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We are almost done. At T → ∞, there must be many solutions
which correspond to the particle going between the two peaks of the
inverted potential many times. See Figure 8.16. As the action is con-
centrated near the center of the instanton (with a finite time spread of
the order of ∆τ ∼ 1/ω)—and this is the reason for its name—the con-
tribution corresponding to n instantons will be roughly proportional to
(Ke−S

inst/~T )n. Clearly n must be even for amplitude (8.29) whereas

Fig. 8.16

only odd-n solutions contribute to amplitude (8.28). Summing over the
centers of the instantons we finally get

〈−η|e−HT |−η〉 = 〈η|e−HT |η〉 ≃
(mω

~

)1/2

e−ωT/2 cosh
(
Ke−S

(inst)/~T
)

;

〈η|e−HT |−η〉 = 〈−η|e−HT |η〉 ≃
(mω

~

)1/2

e−ωT/2 sinh
(
Ke−S

(inst)/~T
)
.

Clearly the states |η〉 and |−η〉 are not eigenstates of the evolution op-
erator, i.e., of the Hamiltonian. The correct eigenstates are the combi-
nations |ψ±〉 = (|η〉 ± |−η〉)/

√
2, in the basis of which e−HT is diagonal.

The energy eigenvalues are (coshx± sinhx = e±x)

E± =
~ω

2
∓K~ e−S

(inst)/~ .

Chapter summary

• The quantum mechanical Green function is given by the sum over
paths, each path weighted by eiS/~.

Further reading

Special advice for the interested reader: read the orig-
inal article by Feynman, Space-time approach to non-

relativistic quantum mechanics, [Feynman (1948)]. For
more details on the path integral formulation of quantum
mechanics, the reader will find the book Quantum Me-

chanics and path integrals [Feynman and Hibbs (1965)]
very stimulating. The first chapters of the book Quan-

tum Field Theory and Critical Phenomena [Zinn-Justin
(1989)] is a good introduction; this is also an example of
a book dedicated both to quantum field theory and to
critical phenomena. The review article [Abers and Lee

(1973)] gives a very neat introduction to the path inte-
gral, as well as to the modern gauge theories. There are
many other good books specialized in path integrals such
as [Schulman (1981)] and [Kleinert (2006)].

The path integral method helped as the basis for
an enormous advance in the numerical investigations of
quantum field theory and statistical mechanics. Many
approaches are based on the Monte Carlo method. In the
numerical problems we give a brief account of these tech-
niques in the case of simple quantum mechanical prob-
lems.



202 Problems

Numerical analyses

(8.1) Write a Monte Carlo simulation for one-
dimensional quantum systems. Apply the method
to the computation of the propagator for harmonic

and anharmonic oscillators.

(8.2) Compute the path integral, by defining a transfer
matrix between the adjacent time slices.


