Quantum Mechanics

A New Introduction

K. Konishi University of Pisa and INFN, Pisa

G. Paffuti University of Pisa and INFN, Pisa

CLARENDON PRESS • OXFORD 2009

Preface

A student's first encounter with quantum mechanics could be a traumatic one. Instead of the solid differential equation with respect to time (t) which is Newton's classical equation of motion, with its inevitable consequences, she or he learns that the new mechanics predicts as a rule only certain probabilities (!), and that electrons behave like a sort of wave, a bizarre notion—but an empirical fact.¹

When the student makes some progress in her or his study, however, she (he) will realize that, after all, things are not that bad: the fundamental equation of the new mechanics—the Schrödinger equation—is a well-defined, perfectly respectable linear differential equation in t, and when left alone, the microscopic system evolves in a rigorously deterministic fashion. Not only that, but due to the quantization of finite motions, and intimately related to this, to the existence of a new fundamental constant of Nature, the Planck constant, h, quantum mechanics provides a much sharper (and sometimes, far simpler) explanation of the properties of atoms than does classical mechanics. For instance, all atoms of the same kind, in their normal state, have rigorously identical properties. This fact is fundamental, for instance, to the regular structures, and in the working, of the macroscopic world (solids, crystals, biological phenomena, etc). The advantage of the new mechanics over the classical one is, of course, not limited to atoms. There are many phenomena in our daily life, such as electrical conduction, the laser, electronics, quantum optics, and all other related contemporary technologies, which require quantum mechanics for a proper understanding.

Later on in her or his study, the student might find out that physicists today are debating the validity of the standard model predictions sometimes to the *eleventh* digit, for instance concerning the anomalous magnetic moment of the muon (a kind of heavy electron). Of course, here we are comparing a particular model of Nature with experiments; however, the standard model of fundamental interactions—quantum chromodynamics for strong interactions and the Glashow–Weinberg–Salam theory of electroweak interactions—are all based on *relativistic quantum mechanics*. In atomic physics, the agreement between theory and experiment can be equally good and sometimes even more impressive. All this, finally, will convince her (him) that we are indeed dealing with one of the most precise and perhaps most elegant theories ever known in physics.

One day she or he might become a researcher or a teacher, and may start giving a course on quantum mechanics. Perhaps, after many years, ¹The background picture on the frontcover page represents electron wave ripples, formed by 50 kV electron beams going through a collodion thin film with tiny holes. The magnification is such that the full page width corresponds to about 0.6 microns. (Courtesy of Dr. Akira Tonomura, Hitachi Advanced Research Laboratory, Saitama, Japan.) she (he) will continue to marvel at the simplicity and beauty of quantum mechanics, and at the same time its subtle and far-reaching consequences.

One of the main aims of this book is to try to convey this sense of wonder to young students who are starting to appreciate the beauty of physics.

This book is, in fact, meant to be an introductory textbook on quantum mechanics: it should be adequate for those who are learning it for the first time, as well as for slightly more advanced students. Standard courses on classical physics, including classical mechanics, electromagnetism, statistical mechanics and thermodynamics, plus basic mathematics, should provide a sufficient background.

At the same time, however, we hope that this book, with its many examples of solved problems, and the diverse subjects discussed, will be a useful reference tool for more advanced students, active researchers and teachers alike.

Let us illustrate some of the innovative features of this book. We took great pains to try to present quantum mechanics pedagogically, and at the same time with as much logical clarity and organization as possible. Concepts and methods are introduced gradually, and each of them is elaborated better and more precisely as the pages go on. We start, in fact, from the very basic concepts illustrated by elementary applications, and move on to more structural issues such as symmetry, statistics, and formal aspects of quantum mechanics, and then explore several standard approximation methods. Various applications of physical interest are then discussed, taking full advantage of the artillery we have armed ourselves with.

As far as the content goes, for the most part, it is fairly standard, even though some of the discussions in the main text, e.g. in Chapter 12 (systems with general time-dependent Hamiltonians), in Chapter 13 (metastable states), and in Chapter 15 (atoms), and several topics treated in Supplements (Chapter 20), may often not be found in a standard textbook.

At the end of each chapter, there are a number of problems to be solved analytically, as well as some others to be solved by numerical methods. The solutions to both types of problems are provided in an accompanying CD, in the form of PDF files (analytical problems) or in the form of Mathematica notebooks (there are 88 of these). The latter contain self-explanatory expositions of the solutions proposed, as well as an elementary guide to the Mathematica commands used, so that they should be easily usable even by those who are seeing a Mathematica program for the first time. The reader is encouraged to run the program, enjoy observing how the wave functions evolve, for example, modify and extend the problems as she (he) pleases, try to improve the precision of the calculation, etc. (Here are practical tips for the beginner: first, carefully read the ReadmeFirst file before starting; second, make a copy of each nb file before proceeding, and keep the original intact. Use a copy, when actually running the program, and making modifications

and extensions.)

In some cases the analysis is pushed a little deeper into the heart of the problem than is ordinarily done in a quantum mechanics textbook (such as the problem of the divergences of perturbation series and resummation; the study of metastable systems; concrete determination of atomic spectra for general elements, etc.), but always in a concrete, physical fashion, never going too much into mathematics.

All in all, this is meant to be a contemporary, but at the same time relatively self-contained and comprehensive, textbook on quantum mechanics.

The book is organized as follows. Part I is an elementary introduction to the basics of quantum mechanics. Together with some initial sections on perturbation theory and variational methods in Part II, Part I could correspond to standard material for an introductory semester course on quantum mechanics in most universities. Part II is dedicated to the three standard methods of approximation, perturbation theory, the variational method, and the semiclassical approximation, through which the concepts in the theory are further developed and the range of applicability vastly increased. In Part III the formalism and methods of analyses developed are applied to various physical situations, from general timedependent Hamiltonians, general discussions of metastable systems, the motion of electrically charged particles in electromagnetic fields, atoms, the scattering problem, atomic nuclei, and elementary particles.

Part IV is dedicated to two fundamental issues of a conceptual nature: quantum entanglement and the measurement problems.

Part V—the Supplements—is a collection of discussions of various natures, ranging from a review of useful formulas and tables, to some advanced topics, technical issues, and mathematical appendices. They are independent of each other, there is no ordering among them, and many are even independent of the main text, so that each of them can be read at leisure in a convenient moment for each reader.

The accompanying CD, as already anticipated, contains the Mathematica notebooks and PDF files in which the problems proposed at the end of each chapter are solved and discussed. The subfiles for each chapter contain all the notebooks of that chapter, accompanied by a file called Guide-to-NB.nb. In this file a list of all the Mathematica notebooks of that chapter is given, as well as a brief description of each notebook. All analyses have been done by using Mathematica 6, Wolfram Research, and tested with Mathematica 7, which has just come out.

For updates and corrections, consult our webpages:

http://www.df.unipi.it/~konishi http://www.df.unipi.it/~paffuti

We are grateful to Mark Seymour of OUP for his brave attempt at polishing our English and for his invaluable help in improving the look of the whole book. Of course, the responsibility for any errors in the text or formulas, or for any misleading expressions, which may undoubtedly still remain or might have been introduced during the course of corrections, viii Preface

is ours and ours only. Thanks are also due to Charlotte Green of OUP for her crisp approach to editorial help, and to Sonke Adlung, the senior physics editor, for his admirable patience during this book's long period of gestation.

Our hearty gratitude goes to our friends and colleagues who helped us at various moments and in various—small and big—ways. A short list includes: A. Bonaccorso, D. M. Brink, P. Calabrese, P. Cecchi, R. Collina, E. D'Emilio, A. Di Giacomo, G. Dunne, T. Elze, M. Fukugita, C. Giannessi, V. Gracco, R. Guida, R. Jackiw, F. Maccarrone, G. Marchesini, M. Matone, P. Menotti, M. Mintchev, F. M. Miranda, G. Morchio, E. Onofri, L. Picasso, M. Rocca, S. Shore, A. Toncelli, M. Tonelli, A. Tonomura, P. Truini, A. Vainshtein, and G. Veneziano.

A final message to all of you (especially to the young):

Read and Enjoy!

Pisa, February 2009

K. Konishi and G. Paffuti

Contents

Ι	Ba	sic qu	antum mechanics	1	
1	Intr	Introduction			
	1.1	1.1 The quantum behavior of the electron			
		1.1.1	Diffraction and interference-visualizing the quan-		
			tum world	5	
		1.1.2	The stability and identity of atoms	6	
		1.1.3	Tunnel effects	8	
	1.2	The bi	rth of quantum mechanics	9	
		1.2.1	From the theory of specific heat to Planck's formula	9	
			The photoelectric effect	14	
		1.2.3	Bohr's atomic model	15	
		1.2.4	The Bohr–Sommerfeld quantization condition;		
			de Broglie's wave	17	
	Furt	her read	ding	18	
	Guid	le to th	e Supplements	18	
	Prob	olems		19	
	Num	nerical a	analyses	19	
2	Quantum mechanical laws				
	2.1	Quant	um states	21	
		2.1.1	Composite systems	24	
		2.1.2	Photon polarization and the statistical nature of		
			quantum mechanics	24	
	2.2	The u	ncertainty principle	26	
	2.3				
		2.3.1	The projection operator and state vector reduction	31	
		2.3.2	Hermitian operators	32	
		2.3.3	Products of operators, commutators, and compat-		
			ible observables	33	
		2.3.4	The position operator, the momentum operator,		
			fundamental commutators, and Heisenberg's rela-		
			tion	35	
		2.3.5	Heisenberg's relations	36	
	2.4	The Se	chrödinger equation	37	
		2.4.1	More about the Schrödinger equations	38	
		2.4.2	The Heisenberg picture	40	
	2.5	The co	ontinuous spectrum	40	
		2.5.1	The delta function	41	
		2.5.2	Orthogonality	43	

 ${\tt x} \quad Contents$

		2.5.3	The position and momentum eigenstates; momen-	
			tum as a translation operator	43
	2.6	-	leteness	45
		blems		47
	Nun	nerical	analyses	48
3	The	e Schrö	ödinger equation	49
	3.1	Gener	al properties	49
		3.1.1	Boundary conditions	49
			Ehrenfest's theorem	50
		3.1.3	Current density and conservation of probability	51
		3.1.4	The virial and Feynman–Hellman theorems	52
	3.2	One-d	limensional systems	53
		3.2.1	The free particle	54
		3.2.2	Topologically nontrivial space	55
		3.2.3	Special properties of one-dimensional Schrödinger	
			equations	56
	3.3	Poten	tial wells	58
		3.3.1	Infinitely deep wells (walls)	58
		3.3.2		59
		3.3.3	-	61
	3.4	The h	armonic oscillator	63
		3.4.1	The wave function and Hermite polynomials	63
		3.4.2		67
	3.5	Scatte	ering problems and the tunnel effect	71
		3.5.1	0 -	71
		3.5.2		74
		3.5.3		78
	3.6	Period	dic potentials	80
		3.6.1	The band structure of the energy spectrum	80
		3.6.2	Analysis	82
	Gui	de to tl	ne Supplements	84
		blems		85
	Nun	nerical	analyses	87
4	Ang	gular r	nomentum	89
	-	-	nutation relations	89
	4.2	~	rotations	91
	4.3		tization	92
	4.4	•	Stern–Gerlach experiment	95
	4.5		ical harmonics	96
	4.6		\mathbf{x} elements of \mathbf{J}	98
		4.6.1	Spin- $\frac{1}{2}$ and Pauli matrices	100
	4.7	-	omposition rule	101
	_···	4.7.1	The Clebsch–Gordan coefficients	104
	4.8	Spin		104
		4.8.1	Rotation matrices for spin $\frac{1}{2}$	107
	Gui		The Supplements $\frac{1}{2}$	101
	Jun		To experimente	100

Contents xi

	Problems			
5	Sym	metry and statistics	111	
	5.1	Symmetries in Nature	111	
	5.2	Symmetries in quantum mechanics	113	
		5.2.1 The ground state and symmetry	116	
		5.2.2 Parity (\mathcal{P})	117	
		5.2.3 Time reversal	121	
		5.2.4 The Galilean transformation	123	
		5.2.5 The Wigner–Eckart theorem	125	
	5.3 Identical particles: Bose–Einstein and Fermi–Dirac stat			
		tics	127	
		5.3.1 Identical bosons	130	
		5.3.2 Identical fermions and Pauli's exclusion principle	132	
	Guide	e to the Supplements	133	
	Probl	ems	134	
6	Thre	e-dimensional problems	135	
		Simple three-dimensional systems	135	
		6.1.1 Reduced mass	135	
		6.1.2 Motion in a spherically symmetric potential	136	
		6.1.3 Spherical waves	137	
	6.2	Bound states in potential wells	140	
	6.3	The three-dimensional oscillator	141	
	6.4	The hydrogen atom	143	
		e to the Supplements	148	
	Probl		149	
	Nume	erical analyses	150	
7	Some	e finer points of quantum mechanics	151	
		Representations	151	
		7.1.1 Coordinate and momentum representations	152	
	7.2	States and operators	155	
		7.2.1 Bra and ket; abstract Hilbert space	155	
	7.3	Unbounded operators	158	
		7.3.1 Self-adjoint operators	160	
	7.4	Unitary transformations	167	
	7.5	The Heisenberg picture	169	
		7.5.1 The harmonic oscillator in the Heisenberg picture	171	
	7.6	The uncertainty principle	172	
	7.7	Mixed states and the density matrix	173	
		7.7.1 Photon polarization	176	
	7.8	Quantization in general coordinates	178	
	Furth	er reading	182	
	Guide to the Supplements			
	Probl	ems	182	
8	Path	integrals	183	
		Green functions	183	

xii Contents

	8.2		integrals	186
		8.2.1		186
			Mode expansion	190
			Feynman graphs	192
			Back to ordinary (Minkowski) time	197
		8.2.5		198
		ther rea	~	201
	Nur	nerical	analyses	202
II	A	ppro	ximation methods	203
9	Per	turbat	ion theory	207
	9.1	Time-	independent perturbations	207
		9.1.1	Degenerate levels	212
		9.1.2	The Stark effect on the $n = 2$ level of the hydrogen	
			atom	214
		9.1.3	Dipole interactions and polarizability	217
	9.2	Quant	tum transitions	219
		9.2.1	Perturbation lasting for a finite interval	221
			Periodic perturbation	223
		9.2.3	Transitions in a discrete spectrum	223
		9.2.4		225
	9.3		itions in the continuum	226
		9.3.1	State density	228
	9.4	Decay		228
	9.5		comagnetic transitions	233
		9.5.1	1 11	234
		9.5.2	1	237
		9.5.3	Induced (or stimulated) emission	238
		9.5.4	T	239
			Einstein coefficients	240
			ne Supplements	242
		blems		242
	Nur	nerical	analyses	244
10			al methods	245
	10.1		ariational principle	245
			Lower limits	247
			2 Truncated Hilbert space	249
	10.2	-	e applications	250
			The harmonic oscillator	250
			Helium: an elementary variational calculation	252
	10.0		The virial theorem	254
		-	round state of the helium	255
			ne Supplements	261
		blems	,	261
	Nur	nerical	analyses	262

Contents xiii

11	The	semi-	classical approximation	265
	11.1	The W	KB approximation	265
		11.1.1	Connection formulas	268
	11.2	The B	ohr–Sommerfeld quantization condition	271
		11.2.1	Counting the quantum states	273
		11.2.2	Potentials defined for $x > 0$ only	275
		11.2.3	On the meaning of the limit $\hbar \to 0$	276
		11.2.4	Angular variables	276
		11.2.5	Radial equations	279
		11.2.6	Examples	282
	11.3	The tu	nnel effect	283
		11.3.1	The double well	285
		11.3.2	The semi-classical treatment of decay processes	289
		11.3.3	The Gamow–Siegert theory	292
	11.4	Phase	shift	295
	Furtl	her read	ling	300
	Guid	e to the	e Supplements	300
	Prob	lems		301
	Num	erical a	nalyses	302

III Applications

303

12 Time evolution	307		
12.1 General features of time evolution	307		
12.2 Time-dependent unitary transformations	309		
12.3 Adiabatic processes	311		
12.3.1 The Landau–Zener transition	313		
12.3.2 The impulse approximation	315		
12.3.3 The Berry phase	316		
12.3.4 Examples	318		
12.4 Some nontrivial systems	320		
12.4.1 A particle within moving walls	320		
12.4.2 Resonant oscillations	324		
12.4.3 A particle encircling a solenoid	327		
12.4.4 A ring with a defect	328		
12.5 The cyclic harmonic oscillator: a theorem	331		
12.5.1 Inverse linear variation of the frequency	335		
12.5.2 The Planck distribution inside an oscillating cavity	7 336		
12.5.3 General power-dependent frequencies	338		
12.5.4 Exponential dependence	339		
12.5.5 Creation and annihilation operators; coupled os-			
cillators	340		
Guide to the Supplements	341		
Problems	341		
Numerical analyses			
13 Metastable states343			

 \mathbf{xiv} Contents

	13.1	Green	functions	343
		13.1.1	Analytic properties of the resolvent	345
			Free particles	349
		13.1.3	The free Green function in general dimensions	351
		13.1.4	Expansion in powers of H_I	352
	13.2	Metast	table states	356
		13.2.1	Formulation of the problem	356
		13.2.2	The width of a metastable state; the mean half-	
			lifetime	358
		13.2.3	Formal treatment	361
	13.3	Examp	ples	368
		13.3.1	Discrete–continuum coupling	368
	13.4		ex scale transformations	370
		13.4.1	Analytic continuation	372
	13.5		ations and examples	374
			Resonances in helium	375
			The potential $V_0 r^2 e^{-r}$	375
			The unbounded potential; the Lo Surdo–Stark effe	
		her read	ding	379
		olems		379
	Num	erical a	analyses	379
14			gnetic interactions	381
	14.1	The ch	narged particle in an electromagnetic field	381
		14.1.1	Classical particles	381
			Quantum particles in electromagnetic fields	383
			Dipole and quadrupole interactions	385
			Magnetic interactions	388
			Relativistic corrections: LS coupling	388
			Hyperfine interactions	390
	14.2		haronov–Bohm effect	392
			Superconductors	395
	14.3		andau levels	397
			The quantum Hall effect	399
		-	etic monopoles	401
			e Supplements	404
		olems	1	404
	Num	ierical a	analyses	404
15	Ato			405
	15.1		onic configurations	405
			The ionization potential	408
			The spectrum of alkali metals	410
			X rays	410
	15.2		artree approximation	412
			Self-consistent fields and the variational principle	415
	150		Some results	417
	15.3	Multip	olets	418

Contents xv

		15.3.1	Structure of the multiplets	419
	15.4	Slater	determinants	424
	15.5	The H	artree–Fock approximation	427
		15.5.1	Examples	430
	15.6	Spin-c	orbit interactions	433
		15.6.1	The hydrogen atom	436
	15.7	Atoms	in external electric fields	438
		15.7.1	Dipole interaction and polarizability	438
		15.7.2	Quadrupole interactions	442
	15.8	The Ze	eeman effect	443
		15.8.1	The Zeeman effect in quantum mechanics	444
	Furt	her read		450
	Guid	le to th	e Supplements	451
	Prob	olems		451
	Num	nerical a	analyses	452
16			ttering theory	453
			coss section	453
	16.2		l wave expansion	457
			The semi-classical limit	459
			ippman–Schwinger equation	460
			orn approximation	461
			konal approximation	463
			nergy scattering	465
	16.7		mb scattering: Rutherford's formula	468
			Scattering of identical particles	473
		her read		474
			e Supplements	475
		olems		476
	Num	nerical a	analyses	476
17			clei and elementary particles	477
	17.1		c nuclei	477
			General features	477
			Isospin	478
		17.1.3	Nuclear forces, pion exchange, and the Yukawa	
			potential	480
			Radioactivity	482
	. – .		The deuteron and two-nucleon forces	483
	17.2		ntary particles: the need for relativistic quantum	
			neories	485
			The Klein–Gordon and Dirac equations	487
			Quantization of the free Klein–Gordon fields	490
		17.2.3	Quantization of the free Dirac fields and the spin-	101
		180.	statistics connection	491
			Causality and locality	492
			Self-interacting scalar fields	494
		17.2.6	Non-Abelian gauge theories: the Standard Model	495

IV Entanglement and Measurement	499
18 Quantum entanglement	503
18.1 The EPRB Gedankenexperiment and quantum entangle-	
ment	503
18.2 Aspect's experiment	508
18.3 Entanglement with more than two particles	511
18.4 Factorization versus entanglement	512
18.5 A measure of entanglement: entropy	514
Further reading	516
19 Probability and measurement	517
19.1 The probabilistic nature of quantum mechanics	517
19.2 Measurement and state preparation: from PVM to POVI	
19.3 Measurement "problems"	521
19.3.1 The EPR "paradox"	522
19.3.2 Measurement as a physical process: decoherence	
and the classical limit	525
19.3.3 Schrödinger's cat	527
19.3.4 The fundamental postulate versus Schrödinger's	
equation	529
19.3.5 Is quantum mechanics exact?	530
19.3.6 Cosmology and quantum mechanics	531
19.4 Hidden-variable theories	532
19.4.1 Bell's inequalities	532
19.4.2 The Kochen–Specker theorem	535
19.4.3 "Quantum non-locality" versus "locally causal the- ories" or "local realism"	
	538
Further reading	539
Guide to the Supplements	539
V Supplements	541

496

Further reading

20 Supplements for Part I		
20.1 Classical mechanics		
20.1.1 The Lagrangian formalism		
20.1.2 The Hamiltonian (canonical) formalism	547	
20.1.3 Poisson brackets	549	
20.1.4 Canonical transformations	550	
20.1.5 The Hamilton–Jacobi equation	552	
20.1.6 Adiabatic invariants	552	
20.1.7 The virial theorem	554	
20.2 The Hamiltonian of electromagnetic radiation field in the		
vacuum	554	

	20.3 Orthogonality and completeness in a system with a one-	
	dimensional delta function potential	556
	20.3.1 Orthogonality	557
	20.3.2 Completeness	558
	20.4 The S matrix; the wave packet description of scattering	560
	20.4.1 The wave packet description	560
	20.5 Legendre polynomials	564
	20.6 Groups and representations	566
	20.6.1 Group axioms; some examples	566
	20.6.2 Group representations	568
	20.6.3 Lie groups and Lie algebras	570
	20.6.4 The $U(N)$ group and the quarks	573
	20.7 Formulas for angular momentum	575
	20.8 Young tableaux	581
	20.9 N-particle matrix elements	584
	20.10 The Fock representation	586
	20.10.1 Bosons	586
	20.10.2 Fermions	588
	20.11 Second quantization	589
	20.12 Supersymmetry in quantum mechanics	590
	20.13 Two- and three-dimensional delta function potentials	595
	20.13.1 Bound states	597
	20.13.2 Self-adjoint extensions	598
	20.13.3 The two-dimensional delta-function potential: a	
	quantum anomaly	599
	20.14 Superselection rules	601
	20.15 Quantum representations	604
	20.15.1 Weyl's commutation relations	605
	20.15.2 Von Neumann's theorem	605
	20.15.3 Angular variables	606
	20.15.4 Canonical transformations	608
	20.15.5 Self-adjoint extensions	610
	20.16 Gaussian integrals and Feynman graphs	611
21	Supplements for Part II	615
	21.1 Supplements on perturbation theory	615
	21.1.1 Change of boundary conditions	615
	21.1.2 Two-level systems	616
	21.1.3 Van der Waals interactions	618
	21.1.4 The Dalgarno–Lewis method	619
	21.2 The fine structure of the hydrogen atom	621
	21.2.1 A semi-classical model for the Lamb shift	626
	21.3 Hydrogen hyperfine interactions	630
	21.4 Divergences of perturbative series	633
	21.4.1 Perturbative series at large orders: the anharmonic	
	oscillator	633
	21.4.2 The origin of the divergence	635
	21.4.3 The analyticity domain	636

xviii Contents

		21.4.4 Asyr	nptotic series	638
		•	dispersion relation	642
			perturbative-variational approach	645
	21.5		assical approximation in general systems	648
		21.5.1 Intro		648
		21.5.2 Kelle	er quantization	650
			grable systems	653
		21.5.4 Exam	nples	654
		21.5.5 Caus	stics	655
		21.5.6 The	KAM theorem and quantization	655
22	Sup	plements fo	pr Part III	657
			system and CP violation	657
	22.2	Level densit	•	661
			free particle	665
			and the partition function	666
		- ()	and short-distance behavior	669
			l density and scattering	671
			stabilization method	673
		Thomas pre		674
			corrections in an external field	676
	22.5		onian for interacting charged particles	678
			interaction potentials	679
			-dependent interactions	681
			quantum Hamiltonian	682
			tron–electron interactions	682
			tron-nucleus interactions $1/M$	683
	າາ ເ		1/M corrections	$686 \\ 687$
	22.0	22.6.1 Mati	n of electromagnetic fields	689
	00.7	Atoms	rix elements	692
	22.1		Thomas–Fermi approximation	693
			Hartree approximation	700
			er determinants and matrix elements	700
			iltonians for closed shells	705
		22.7.5 Mea		712
			iltonians for incomplete shells	712
			nvalues of H	716
			elementary theory of multiplets	717
			Hartree–Fock equations	719
			role of Lagrange multipliers	721
			pman's theorem	723
	22.8			726
		-	Pitaevski equation	729
			lassical scattering amplitude	731
			stics and rainbows	732

23 Supplements for Part IV

 $\mathbf{735}$

Contents xix

23.1 Speakable and unspeakable in quantum mechanics	735
23.1.1 Bell's toy model for hidden variables	735
23.1.2 Bohm's pilot waves	736
23.1.3 The many-worlds interpretation	739
23.1.4 Spontaneous wave function collapse	740
24 Mathematical appendices and tables	743
24.1 Mathematical appendices	743
24.1.1 Laplace's method	743
24.1.2 The saddle-point method	744
24.1.3 Airy functions	748
References	765
Index	775