Quantum Mechanics

A New Introduction

K. Konishi
University of Pisa and INFN, Pisa
G. Paffuti
University of Pisa and INFN, Pisa

Preface

A student's first encounter with quantum mechanics could be a traumatic one. Instead of the solid differential equation with respect to time (t) which is Newton's classical equation of motion, with its inevitable consequences, she or he learns that the new mechanics predicts as a rule only certain probabilities (!), and that electrons behave like a sort of wave, a bizarre notion - but an empirical fact. ${ }^{1}$

When the student makes some progress in her or his study, however, she (he) will realize that, after all, things are not that bad: the fundamental equation of the new mechanics - the Schrödinger equation-is a well-defined, perfectly respectable linear differential equation in t, and when left alone, the microscopic system evolves in a rigorously deterministic fashion. Not only that, but due to the quantization of finite motions, and intimately related to this, to the existence of a new fundamental constant of Nature, the Planck constant, h, quantum mechanics provides a much sharper (and sometimes, far simpler) explanation of the properties of atoms than does classical mechanics. For instance, all atoms of the same kind, in their normal state, have rigorously identical properties. This fact is fundamental, for instance, to the regular structures, and in the working, of the macroscopic world (solids, crystals, biological phenomena, etc). The advantage of the new mechanics over the classical one is, of course, not limited to atoms. There are many phenomena in our daily life, such as electrical conduction, the laser, electronics, quantum optics, and all other related contemporary technologies, which require quantum mechanics for a proper understanding.

Later on in her or his study, the student might find out that physicists today are debating the validity of the standard model predictions sometimes to the eleventh digit, for instance concerning the anomalous magnetic moment of the muon (a kind of heavy electron). Of course, here we are comparing a particular model of Nature with experiments; however, the standard model of fundamental interactions - quantum chromodynamics for strong interactions and the Glashow-Weinberg-Salam theory of electroweak interactions - are all based on relativistic quantum mechanics. In atomic physics, the agreement between theory and experiment can be equally good and sometimes even more impressive. All this, finally, will convince her (him) that we are indeed dealing with one of the most precise and perhaps most elegant theories ever known in physics.

One day she or he might become a researcher or a teacher, and may start giving a course on quantum mechanics. Perhaps, after many years,
${ }^{1}$ The background picture on the frontcover page represents electron wave ripples, formed by 50 kV electron beams going through a collodion thin film with tiny holes. The magnification is such that the full page width corresponds to about 0.6 microns. (Courtesy of Dr. Akira Tonomura, Hitachi Advanced Research Laboratory, Saitama, Japan.)
she (he) will continue to marvel at the simplicity and beauty of quantum mechanics, and at the same time its subtle and far-reaching consequences.

One of the main aims of this book is to try to convey this sense of wonder to young students who are starting to appreciate the beauty of physics.

This book is, in fact, meant to be an introductory textbook on quantum mechanics: it should be adequate for those who are learning it for the first time, as well as for slightly more advanced students. Standard courses on classical physics, including classical mechanics, electromagnetism, statistical mechanics and thermodynamics, plus basic mathematics, should provide a sufficient background.

At the same time, however, we hope that this book, with its many examples of solved problems, and the diverse subjects discussed, will be a useful reference tool for more advanced students, active researchers and teachers alike.

Let us illustrate some of the innovative features of this book. We took great pains to try to present quantum mechanics pedagogically, and at the same time with as much logical clarity and organization as possible. Concepts and methods are introduced gradually, and each of them is elaborated better and more precisely as the pages go on. We start, in fact, from the very basic concepts illustrated by elementary applications, and move on to more structural issues such as symmetry, statistics, and formal aspects of quantum mechanics, and then explore several standard approximation methods. Various applications of physical interest are then discussed, taking full advantage of the artillery we have armed ourselves with.

As far as the content goes, for the most part, it is fairly standard, even though some of the discussions in the main text, e.g. in Chapter 12 (systems with general time-dependent Hamiltonians), in Chapter 13 (metastable states), and in Chapter 15 (atoms), and several topics treated in Supplements (Chapter 20), may often not be found in a standard textbook.

At the end of each chapter, there are a number of problems to be solved analytically, as well as some others to be solved by numerical methods. The solutions to both types of problems are provided in an accompanying CD, in the form of PDF files (analytical problems) or in the form of Mathematica notebooks (there are 88 of these). The latter contain self-explanatory expositions of the solutions proposed, as well as an elementary guide to the Mathematica commands used, so that they should be easily usable even by those who are seeing a Mathematica program for the first time. The reader is encouraged to run the program, enjoy observing how the wave functions evolve, for example, modify and extend the problems as she (he) pleases, try to improve the precision of the calculation, etc. (Here are practical tips for the beginner: first, carefully read the ReadmeFirst file before starting; second, make a copy of each nb file before proceeding, and keep the original intact. Use a copy, when actually running the program, and making modifications
and extensions.)
In some cases the analysis is pushed a little deeper into the heart of the problem than is ordinarily done in a quantum mechanics textbook (such as the problem of the divergences of perturbation series and resummation; the study of metastable systems; concrete determination of atomic spectra for general elements, etc.), but always in a concrete, physical fashion, never going too much into mathematics.
All in all, this is meant to be a contemporary, but at the same time relatively self-contained and comprehensive, textbook on quantum mechanics.

The book is organized as follows. Part I is an elementary introduction to the basics of quantum mechanics. Together with some initial sections on perturbation theory and variational methods in Part II, Part I could correspond to standard material for an introductory semester course on quantum mechanics in most universities. Part II is dedicated to the three standard methods of approximation, perturbation theory, the variational method, and the semiclassical approximation, through which the concepts in the theory are further developed and the range of applicability vastly increased. In Part III the formalism and methods of analyses developed are applied to various physical situations, from general timedependent Hamiltonians, general discussions of metastable systems, the motion of electrically charged particles in electromagnetic fields, atoms, the scattering problem, atomic nuclei, and elementary particles.

Part IV is dedicated to two fundamental issues of a conceptual nature: quantum entanglement and the measurement problems.

Part V-the Supplements - is a collection of discussions of various natures, ranging from a review of useful formulas and tables, to some advanced topics, technical issues, and mathematical appendices. They are independent of each other, there is no ordering among them, and many are even independent of the main text, so that each of them can be read at leisure in a convenient moment for each reader.

The accompanying CD, as already anticipated, contains the Mathematica notebooks and PDF files in which the problems proposed at the end of each chapter are solved and discussed. The subfiles for each chapter contain all the notebooks of that chapter, accompanied by a file called Guide-to-NB.nb. In this file a list of all the Mathematica notebooks of that chapter is given, as well as a brief description of each notebook. All analyses have been done by using Mathematica 6, Wolfram Research, and tested with Mathematica 7, which has just come out.

For updates and corrections, consult our webpages:

```
http://www.df.unipi.it/~konishi
http://www.df.unipi.it/~paffuti
```

We are grateful to Mark Seymour of OUP for his brave attempt at polishing our English and for his invaluable help in improving the look of the whole book. Of course, the responsibility for any errors in the text or formulas, or for any misleading expressions, which may undoubtedly still remain or might have been introduced during the course of corrections,
is ours and ours only. Thanks are also due to Charlotte Green of OUP for her crisp approach to editorial help, and to Sonke Adlung, the senior physics editor, for his admirable patience during this book's long period of gestation.

Our hearty gratitude goes to our friends and colleagues who helped us at various moments and in various-small and big-ways. A short list includes: A. Bonaccorso, D. M. Brink, P. Calabrese, P. Cecchi, R. Collina, E. D'Emilio, A. Di Giacomo, G. Dunne, T. Elze, M. Fukugita, C. Giannessi, V. Gracco, R. Guida, R. Jackiw, F. Maccarrone, G. Marchesini, M. Matone, P. Menotti, M. Mintchev, F. M. Miranda, G. Morchio, E. Onofri, L. Picasso, M. Rocca, S. Shore, A. Toncelli, M. Tonelli, A. Tonomura, P. Truini, A. Vainshtein, and G. Veneziano.

A final message to all of you (especially to the young):

Read and Enjoy!

Contents

I Basic quantum mechanics 1
1 Introduction 5
1.1 The quantum behavior of the electron 5
1.1.1 Diffraction and interference - visualizing the quan- tum world 5
1.1.2 The stability and identity of atoms 6
1.1.3 Tunnel effects 8
1.2 The birth of quantum mechanics 9
1.2.1 From the theory of specific heat to Planck's formula 9
1.2.2 The photoelectric effect 14
1.2.3 Bohr's atomic model 15
1.2.4 The Bohr-Sommerfeld quantization condition; de Broglie's wave 17
Further reading 18
Guide to the Supplements 18
Problems 19
Numerical analyses 19
2 Quantum mechanical laws 21
2.1 Quantum states 21
2.1.1 Composite systems 24
2.1.2 Photon polarization and the statistical nature of quantum mechanics 24
2.2 The uncertainty principle 26
2.3 The fundamental postulate 29
2.3.1 The projection operator and state vector reduction 31
2.3.2 Hermitian operators 32
2.3.3 Products of operators, commutators, and compat- ible observables 33
2.3.4 The position operator, the momentum operator, fundamental commutators, and Heisenberg's rela- tion 35
2.3.5 Heisenberg's relations 36
2.4 The Schrödinger equation 37
2.4.1 More about the Schrödinger equations 38
2.4.2 The Heisenberg picture 40
2.5 The continuous spectrum 40
2.5.1 The delta function 41
2.5.2 Orthogonality 43
2.5.3 The position and momentum eigenstates; momen- tum as a translation operator 43
2.6 Completeness 45
Problems 47
Numerical analyses 48
3 The Schrödinger equation 49
3.1 General properties 49
3.1.1 Boundary conditions 49
3.1.2 Ehrenfest's theorem 50
3.1.3 Current density and conservation of probability 51
3.1.4 The virial and Feynman-Hellman theorems 52
3.2 One-dimensional systems 53
3.2.1 The free particle 54
3.2.2 Topologically nontrivial space 55
3.2.3 Special properties of one-dimensional Schrödinger equations 56
3.3 Potential wells 58
3.3.1 Infinitely deep wells (walls) 58
3.3.2 The finite square well 59
3.3.3 An application 61
3.4 The harmonic oscillator 63
3.4.1 The wave function and Hermite polynomials 63
3.4.2 Creation and annihilation operators 67
3.5 Scattering problems and the tunnel effect 71
3.5.1 The potential barrier and the tunnel effect 71
3.5.2 The delta function potential 74
3.5.3 General aspects of the scattering problem 78
3.6 Periodic potentials 80
3.6.1 The band structure of the energy spectrum 80
3.6.2 Analysis 82
Guide to the Supplements 84
Problems 85
Numerical analyses 87
4 Angular momentum 89
4.1 Commutation relations 89
4.2 Space rotations 91
4.3 Quantization 92
4.4 The Stern-Gerlach experiment 95
4.5 Spherical harmonics 96
4.6 Matrix elements of J 98
4.6.1 Spin- $\frac{1}{2}$ and Pauli matrices 100
4.7 The composition rule 101
4.7.1 The Clebsch-Gordan coefficients 104
4.8 Spin 105
4.8.1 Rotation matrices for spin $\frac{1}{2}$ 107
Guide to the Supplements 108
Problems 109
5 Symmetry and statistics 111
5.1 Symmetries in Nature 111
5.2 Symmetries in quantum mechanics 113
5.2.1 The ground state and symmetry 116
5.2.2 Parity (\mathcal{P}) 117
5.2.3 Time reversal 121
5.2.4 The Galilean transformation 123
5.2.5 The Wigner-Eckart theorem 125
5.3 Identical particles: Bose-Einstein and Fermi-Dirac statis- tics 127
5.3.1 Identical bosons 130
5.3.2 Identical fermions and Pauli's exclusion principle 132
Guide to the Supplements 133
Problems 134
6 Three-dimensional problems 135
6.1 Simple three-dimensional systems 135
6.1.1 Reduced mass 135
6.1.2 Motion in a spherically symmetric potential 136
6.1.3 Spherical waves 137
6.2 Bound states in potential wells 140
6.3 The three-dimensional oscillator 141
6.4 The hydrogen atom 143
Guide to the Supplements 148
Problems 149
Numerical analyses 150
7 Some finer points of quantum mechanics 151
7.1 Representations 151
7.1.1 Coordinate and momentum representations 152
7.2 States and operators 155
7.2.1 Bra and ket; abstract Hilbert space 155
7.3 Unbounded operators 158
7.3.1 Self-adjoint operators 160
7.4 Unitary transformations 167
7.5 The Heisenberg picture 169
7.5.1 The harmonic oscillator in the Heisenberg picture 171
7.6 The uncertainty principle 172
7.7 Mixed states and the density matrix 173
7.7.1 Photon polarization 176
7.8 Quantization in general coordinates 178
Further reading 182
Guide to the Supplements 182
Problems 182
8 Path integrals 183
8.1 Green functions 183
8.2 Path integrals 186
8.2.1 Derivation 186
8.2.2 Mode expansion 190
8.2.3 Feynman graphs 192
8.2.4 Back to ordinary (Minkowski) time 197
8.2.5 Tunnel effects and instantons 198
Further reading 201
Numerical analyses 202
II Approximation methods 203
9 Perturbation theory 207
9.1 Time-independent perturbations 207
9.1.1 Degenerate levels 212
9.1.2 The Stark effect on the $n=2$ level of the hydrogen atom 214
9.1.3 Dipole interactions and polarizability 217
9.2 Quantum transitions 219
9.2.1 Perturbation lasting for a finite interval 221
9.2.2 Periodic perturbation 223
9.2.3 Transitions in a discrete spectrum 223
9.2.4 Resonant oscillation between two levels 225
9.3 Transitions in the continuum 226
9.3.1 State density 228
9.4 Decays 228
9.5 Electromagnetic transitions 233
9.5.1 The dipole approximation 234
9.5.2 Absorption of radiation 237
9.5.3 Induced (or stimulated) emission 238
9.5.4 Spontaneous emission 239
9.6 The Einstein coefficients 240
Guide to the Supplements 242
Problems 242
Numerical analyses 244
10 Variational methods 245
10.1 The variational principle 245
10.1.1 Lower limits 247
10.1.2 Truncated Hilbert space 249
10.2 Simple applications 250
10.2.1 The harmonic oscillator 50
10.2.2 Helium: an elementary variational calculation 252
10.2.3 The virial theorem 254
10.3 The ground state of the helium 255
Guide to the Supplements 261
Problems 261
Numerical analyses 262
11 The semi-classical approximation 265
11.1 The WKB approximation 265
11.1.1 Connection formulas 268
11.2 The Bohr-Sommerfeld quantization condition 271
11.2.1 Counting the quantum states 273
11.2.2 Potentials defined for $x>0$ only 275
11.2.3 On the meaning of the limit $\hbar \rightarrow 0$ 276
11.2.4 Angular variables 276
11.2.5 Radial equations 279
11.2.6 Examples 282
11.3 The tunnel effect 283
11.3.1 The double well 285
11.3.2 The semi-classical treatment of decay processes 289
11.3.3 The Gamow-Siegert theory 292
11.4 Phase shift 295
Further reading 300
Guide to the Supplements 300
Problems 301
Numerical analyses 302
III Applications 303
12 Time evolution 307
12.1 General features of time evolution 307
12.2 Time-dependent unitary transformations 309
12.3 Adiabatic processes 311
12.3.1 The Landau-Zener transition 313
12.3.2 The impulse approximation 315
12.3.3 The Berry phase 316
12.3.4 Examples 318
12.4 Some nontrivial systems 320
12.4.1 A particle within moving walls 320
12.4.2 Resonant oscillations 324
12.4.3 A particle encircling a solenoid 327
12.4.4 A ring with a defect 328
12.5 The cyclic harmonic oscillator: a theorem 331
12.5.1 Inverse linear variation of the frequency 335
12.5.2 The Planck distribution inside an oscillating cavity 336
12.5.3 General power-dependent frequencies 338
12.5.4 Exponential dependence 339
12.5.5 Creation and annihilation operators; coupled os- cillators 340
Guide to the Supplements 341
Problems 341
Numerical analyses 342
13 Metastable states 343
13.1 Green functions 343
13.1.1 Analytic properties of the resolvent 345
13.1.2 Free particles 349
13.1.3 The free Green function in general dimensions 351
13.1.4 Expansion in powers of H_{I} 352
13.2 Metastable states 356
13.2.1 Formulation of the problem 356
13.2.2 The width of a metastable state; the mean half- lifetime 358
13.2.3 Formal treatment 361
13.3 Examples 368
13.3.1 Discrete-continuum coupling 368
13.4 Complex scale transformations 370
13.4.1 Analytic continuation 372
13.5 Applications and examples 374
13.5.1 Resonances in helium 375
13.5.2 The potential $V_{0} r^{2} e^{-r}$ 375
13.5.3 The unbounded potential; the Lo Surdo-Stark effect376
Further reading 379
Problems 379
Numerical analyses 379
14 Electromagnetic interactions 381
14.1 The charged particle in an electromagnetic field 381
14.1.1 Classical particles 381
14.1.2 Quantum particles in electromagnetic fields 383
14.1.3 Dipole and quadrupole interactions 385
14.1.4 Magnetic interactions 388
14.1.5 Relativistic corrections: $L S$ coupling 388
14.1.6 Hyperfine interactions 390
14.2 The Aharonov-Bohm effect 392
14.2.1 Superconductors 395
14.3 The Landau levels 397
14.3.1 The quantum Hall effect 399
14.4 Magnetic monopoles 401
Guide to the Supplements 404
Problems 404
Numerical analyses 404
15 Atoms 405
15.1 Electronic configurations 405
15.1.1 The ionization potential 408
15.1.2 The spectrum of alkali metals 410
15.1.3 X rays 410
15.2 The Hartree approximation 412
15.2.1 Self-consistent fields and the variational principle 415
15.2.2 Some results 417
15.3 Multiplets 418
15.3.1 Structure of the multiplets 419
15.4 Slater determinants 424
15.5 The Hartree-Fock approximation 427
15.5.1 Examples 430
15.6 Spin-orbit interactions 433
15.6.1 The hydrogen atom 436
15.7 Atoms in external electric fields 438
15.7.1 Dipole interaction and polarizability 438
15.7.2 Quadrupole interactions 442
15.8 The Zeeman effect 443
15.8.1 The Zeeman effect in quantum mechanics 444
Further reading 450
Guide to the Supplements 451
Problems 451
Numerical analyses 452
16 Elastic scattering theory 453
16.1 The cross section 453
16.2 Partial wave expansion 457
16.2.1 The semi-classical limit 459
16.3 The Lippman-Schwinger equation 460
16.4 The Born approximation 461
16.5 The eikonal approximation 463
16.6 Low-energy scattering 465
16.7 Coulomb scattering: Rutherford's formula 468
16.7.1 Scattering of identical particles 473
Further reading 474
Guide to the Supplements 475
Problems 476
Numerical analyses 476
17 Atomic nuclei and elementary particles 477
17.1 Atomic nuclei 477
17.1.1 General features 477
17.1.2 Isospin 478
17.1.3 Nuclear forces, pion exchange, and the Yukawa potential 480
17.1.4 Radioactivity 482
17.1.5 The deuteron and two-nucleon forces 483
17.2 Elementary particles: the need for relativistic quantum field theories 485
17.2.1 The Klein-Gordon and Dirac equations 487
17.2.2 Quantization of the free Klein-Gordon fields 490
17.2.3 Quantization of the free Dirac fields and the spin- statistics connection 491
17.2.4 Causality and locality 492
17.2.5 Self-interacting scalar fields 494
17.2.6 Non-Abelian gauge theories: the Standard Model 495
Further reading 496
IV Entanglement and Measurement 499
18 Quantum entanglement 503
18.1 The EPRB Gedankenexperiment and quantum entangle- ment 503
18.2 Aspect's experiment 508
18.3 Entanglement with more than two particles 511
18.4 Factorization versus entanglement 512
18.5 A measure of entanglement: entropy 514
Further reading 516
19 Probability and measurement 517
19.1 The probabilistic nature of quantum mechanics 517
19.2 Measurement and state preparation: from PVM to POVM 519
19.3 Measurement "problems" 521
19.3.1 The EPR "paradox" 522
19.3.2 Measurement as a physical process: decoherence and the classical limit 525
19.3.3 Schrödinger's cat 527
19.3.4 The fundamental postulate versus Schrödinger's equation 529
19.3.5 Is quantum mechanics exact? 530
19.3.6 Cosmology and quantum mechanics 531
19.4 Hidden-variable theories 532
19.4.1 Bell's inequalities 532
19.4.2 The Kochen-Specker theorem 535
19.4.3 "Quantum non-locality" versus "locally causal the- ories" or "local realism" 538
Further reading 539
Guide to the Supplements 539
V Supplements 541
20 Supplements for Part I 545
20.1 Classical mechanics 545
20.1.1 The Lagrangian formalism 545
20.1.2 The Hamiltonian (canonical) formalism 547
20.1.3 Poisson brackets 549
20.1.4 Canonical transformations 550
20.1.5 The Hamilton-Jacobi equation 552
20.1.6 Adiabatic invariants 552
20.1.7 The virial theorem 554
20.2 The Hamiltonian of electromagnetic radiation field in the vacuum 554
20.3 Orthogonality and completeness in a system with a one- dimensional delta function potential 556
20.3.1 Orthogonality 557
20.3.2 Completeness 558
20.4 The S matrix; the wave packet description of scattering 560
20.4.1 The wave packet description 560
20.5 Legendre polynomials 564
20.6 Groups and representations 566
20.6.1 Group axioms; some examples 566
20.6.2 Group representations 568
20.6.3 Lie groups and Lie algebras 570
20.6.4 The $U(N)$ group and the quarks 573
20.7 Formulas for angular momentum 575
20.8 Young tableaux 581
20.9 N -particle matrix elements 584
20.10 The Fock representation 586
20.10.1 Bosons 586
20.10.2 Fermions 588
20.11 Second quantization 589
20.12 Supersymmetry in quantum mechanics 590
20.13 Two- and three-dimensional delta function potentials 595
20.13.1 Bound states 597
20.13.2 Self-adjoint extensions 598
20.13.3 The two-dimensional delta-function potential: a quantum anomaly 599
20.14 Superselection rules 601
20.15 Quantum representations 604
20.15.1 Weyl's commutation relations 605
20.15.2 Von Neumann's theorem 605
20.15.3 Angular variables 606
20.15.4 Canonical transformations 608
20.15.5 Self-adjoint extensions 610
20.16 Gaussian integrals and Feynman graphs 611
21 Supplements for Part II 615
21.1 Supplements on perturbation theory 615
21.1.1 Change of boundary conditions 615
21.1.2 Two-level systems 616
21.1.3 Van der Waals interactions 618
21.1.4 The Dalgarno-Lewis method 619
21.2 The fine structure of the hydrogen atom 621
21.2.1 A semi-classical model for the Lamb shift 626
21.3 Hydrogen hyperfine interactions 630
21.4 Divergences of perturbative series 633
21.4.1 Perturbative series at large orders: the anharmonic oscillator 633
21.4.2 The origin of the divergence 635
21.4.3 The analyticity domain 636
21.4.4 Asymptotic series 638
21.4.5 The dispersion relation 642
21.4.6 The perturbative-variational approach 645
21.5 The semi-classical approximation in general systems 648
21.5.1 Introduction 648
21.5.2 Keller quantization 650
21.5.3 Integrable systems 653
21.5.4 Examples 654
21.5.5 Caustics 655
21.5.6 The KAM theorem and quantization 655
22 Supplements for Part III 657
22.1 The $K^{0}-\overline{K^{0}}$ system and CP violation 657
22.2 Level density 661
22.2.1 The free particle 665
22.2.2 $g(E)$ and the partition function 666
22.2.3 $g(E)$ and short-distance behavior 669
22.2.4 Level density and scattering 671
22.2.5 The stabilization method 673
22.3 Thomas precession 674
22.4 Relativistic corrections in an external field 676
22.5 The Hamiltonian for interacting charged particles 678
22.5.1 The interaction potentials 679
22.5.2 Spin-dependent interactions 681
22.5.3 The quantum Hamiltonian 682
22.5.4 Electron-electron interactions 682
22.5.5 Electron-nucleus interactions 683
22.5.6 The $1 / M$ corrections 686
22.6 Quantization of electromagnetic fields 687
22.6.1 Matrix elements 689
22.7 Atoms 692
22.7.1 The Thomas-Fermi approximation 693
22.7.2 The Hartree approximation 700
22.7.3 Slater determinants and matrix elements 703
22.7.4 Hamiltonians for closed shells 707
22.7.5 Mean energy 712
22.7.6 Hamiltonians for incomplete shells 712
22.7.7 Eigenvalues of H 716
22.7.8 The elementary theory of multiplets 717
22.7.9 The Hartree-Fock equations 719
22.7.10 The role of Lagrange multipliers 721
22.7.11Koopman's theorem 723
$22.8 \mathrm{H}_{2}^{+}$ 726
22.9 The Gross-Pitaevski equation 729
22.10 The semi-classical scattering amplitude 731
22.10.1 Caustics and rainbows 732
23 Supplements for Part IV 735
23.1 Speakable and unspeakable in quantum mechanics 735
23.1.1 Bell's toy model for hidden variables 735
23.1.2 Bohm's pilot waves 736
23.1.3 The many-worlds interpretation 739
23.1.4 Spontaneous wave function collapse 740
24 Mathematical appendices and tables 743
24.1 Mathematical appendices 743
24.1.1 Laplace's method 743
24.1.2 The saddle-point method 744
24.1.3 Airy functions 748
References 765
Index 775

