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Results from a molecular dynamics simulation of a melt of unentangled polymers are presented. The
translational motion, the large-scale and the local reorientation processes of the chains, as well as
their relations with the so-called “normal” and “segmental” dielectric relaxation modes are
thoroughly investigated in wide temperature and pressure ranges. The thermodynamic states are
well fitted by the phenomenological Tait equation of state. A global time-temperature-pressure
superposition principle of both the translational and the rotational dynamics is evidenced. The
scaling is more robust than the usual Rouse model. The latter provides insight but accurate
comparison with the simulation calls for modifications to account for both the local chain stiffness
and the nonexponential relaxation. The study addresses the issue whether the temperature or the
density is a dominant control parameter of the dynamics or the two quantities give rise to
comparable effects. By examining the ratja,|/ap between the isochronic and isobaric
expansivities, one finds that the temperature is dominant when the dynamics is fast. If the relaxation
slows down, the fluctuations of the free volume increase their role and become comparable to those
of the thermal energy. Detectable cross-correlation between the “normal-mode” and the
“segmental” dielectric relaxations is found and contrasted with the usual assumption of independent
modes. ©2004 American Institute of Physic§DOI: 10.1063/1.1630293

I. INTRODUCTION a Vogel—Fulcher kind of behavior for the temperature depen-
dence of the relaxation time but different pressure dependen-
Although a number of different experimental techniquescies. In the last decade, this remark motivated several inves-
(such as dielectric and mechanical spectroscopies, EPR afigations of the dynamics of low-molecular-weight and
NMR, light and neutron scattering, eicare available to polymeric glass formers as a function of both the tempera-
probe the relaxation properties of polymers and glassture and the pressure by using various experimental
forming liquids over a broad range of time scales, a completgechniques?~—* Failures of some models in describing the
understanding of the relaxation dynamics is still far to bejsothermal data under variable presstras well as strik-
achieved.™ Nonetheless, the experiments unambiguouslyingly good agreement with the predictions of other models
evidence the huge increase of the structural relaxation timgyr both isothermal and isobaric d&a?°were reported. The
with a super-Arrhenius temperature behavior near the glasghove studies pointed out that the key feature of the models
transition temperatur€g . In order to explain these results, a js the different relevance which is given to the available free
variety of theoretical models have been proposed in the pasfolume and the activated jumps to account for the diffusion
Some of them aimed at establishing the relationship betweej the supercooled state. In fact, as temperature is lowered,
the dynamics and the thermodynamic properties near thghe molecular motions become more restricted, due to both
glass transition(time scale: 10°— 107 s)>° others found  the decrease of the thermal energy and the increased molecu-
that a well-defined crossover to the characteristic dynamicgyr packing???If the dynamics near the glass transition ap-
leading the system to the structural arrest is located at teNpears to be obviously affected by both thermal and density
peratures which are higher thai.’ effects, it is still a matter of wide debate which oftecreas-
The pioneering studies of WillianfsSasabe and Sato ing volume, decreasing temperature, or batlays the major
and Johari and Whalléy have earlier pointed out that @ yole on approaching the glass transitfonZ3 The solution of
deeper insight into the dynamics of glass-forming liquids angpjs problem is of fundamental importance for the complete
amorphous polymers is gained by the knowledge of the regngerstanding of the glass transition. Recently, from high-
laxation times as a function of both temperature and PréSpressure viscosity data for triphenyl-phosphite and glycerol,
sure. In fact, the possibility to reach the glassy state by tWqgreret al23 concluded that the temperature rather than the
alternative paths, i.e., by cooling or compressing, enables fensity sets the super-Arrhenius behavior closd fat at-

more stringent test of several theories, which usually predicﬁwospheric pressure and that the lack of free volume leads to

negligible effects, except maybe at very high pressures. On
3Electronic mail: dino.leporini@df.unipi.it the other hand, Ngaét al? more recently found that the
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thermal variations of unoccupied volume of various glassTABLE I. Points in the P,T) plane investigated by the present study.
formers, measured by positronium annihilation lifetime spec-

. . . . . Temperature
troscopy, reflect changes in the dielectaeelaxation time
over a wide temperature range, implying that the free volume 07 0v5 08 10 12 14 16 18
cannot be neglected in analyzing the structural relaxatiomressure 0.1 . . . . .
properties. Moreover, the latest studies by Paluch and co- 093 . . . .
workers assessed the volume dependence of the structural 2.0 . . . . . . . .
relaxation time of glass-forming liquids near the glass tran- 2'8 : :

sition by using combined temperature and pressure
variations?>~2’ They evidenced that fluctuations in both the
thermal energy and the free volume contribute to the dynam-
ics of supercooled liquids. Volume considerably influencesquilibrium simulations, instead of resorting to more elabo-
the supercooled dynamics of low-molecular-mass van defate approaches requiring the evaluation of the nonequilib-
Waals liquids at ambient pressiffewhile it seems less im- rium response of charged polymer to the presence of external
portant, or at least comparable, to temperature in driving théime-dependent electric fields. The findings of Kaznessis
dynamics at higher pressures or in polymeric syst&r$. et al. parallel well-known experimental evidences that in
The role of the volume becomes negligible compared to thénost polymers, e.g., polyisoprene, the dipole moment is
thermally activated process in hydrogen-bonded sysféms. small and the intermolecular and intramolecular dipole—
The above survey of the experimental results shows theipole interactions are negligibfé.
the microscopic dynamics close to the glass transition is in  The system under investigation in the present article is a
principle affected by both the activated processes and thelt of fully-flexible, freely-jointed polymer chains being
available free volume. This feature suggests further theoregdescribed by a bead-rod modéle., the springs of the
ical work to combine these mechanisms, e.g., by relating thfonded beads are siiff* " The study is carried out by equi-
heights of the potential energy barriers and the local densityiPrium MD simulations and is primarily focussed on the
Experiments on polymeric melts at high pressure havéa_rge—scale a_nd th(aT local rotgtlonal dynamics with an empha-
been recently performed by means of dielectfi®® heat SIS ON the dlel3e9ctr|c properties. We follow the approach of
capacity’® and photon correlation spectroscdByThe acti- Kaznessm.at aI.. and assume that “ghosﬂ.e.., noninteract-
vation volume was found to increase at higher pressure. ThE9) electric dipoles are stuck into the chain with fixed ge-
studies evidenced that the relaxation process functions do n8fnetries accounting for both the so-called norriipole
change appreciably with the pressure and the temperaturBarallel to the chainand the segmentadlipole perpendicular
thus allowing the scaling of the data on proper master curved® the chain relaxation modes of type-A polymers according
The scaling factors differ for the various process and thdo the definition of Stockmayét. To discriminate between

dielectric segmental relaxation process shows a strongdP€ role played by the temperature and the density to set the
pressure dependence than the normal-mode process. relaxation rates, several isobaric and isothermal lines are ex-

plored.

A thorough analysis of the relaxation behavior of an ato- o ,
mistic model of the polymeric melts by changing both the . The amcle is org_amze(_j as folloyvs. In Sec. Il, the tech-
pressure and the temperature is a challenging task since tRiFal details of the simulation are given. In Sec. Il the re-

intramolecular and intermolecular potentials lead to motionswlts, are d'SC‘,JSsed- They include both the StaF'C and thg dy-
occurring on a wide range of time scales. To alleviate thdhamic properties of the model system. The main conclusions

problem and consider only the relevant degrees of freedorft'® summarized in Sec. IV.

of the polymeric chains a number of coarse-graining strate-
gies have been develop&tiThe bead-spring mod¥r3is a !l DETAILS OF THE SIMULATION

well-known scheme to replace groups of atoms of the chain  \We investigate a system &f=200 fully flexible linear

by one super-atom, the bedsee Ref. 37 for a recent re- chains withM =10 monomergbead$ each. The sample is
view). Intramolecular*bonded”) beads are linked by quasi- confined into a cubic box with periodic boundary conditions.
elastic forces. Intermoleculdfnonbonded”) beads interact The interaction between nonbonded monomers occurs
via analytical potentials, e.g., the Lennard—Jones potentialia the standard Lennard—JongsJ) potential

Bennemanret al. carried out a recent molecular dynamics
(MD) study of polymer melts by the bead-spring model at U(r)=4el(o/r) = (a/0)°]+ Uay: @)
different pressures and temperatures and reported mast€he potential is cut off at.,=2.50 and properly shifted by
curves for the incoherent intermediate dynamic structure facd ., SO as to vanish at that point and to make it continuous
tor evaluated atj=2mx/b, beingb the bond length, and the everywhere.

average bond orientational correlation function with rank To handle the boundary conditions, the minimum image
=238 Kaznessi®t al. used the bead-spring model to inves- convention is adopted. Neighboring monomers in the same
tigate the dielectric relaxation of concentrated polymerchain are constrained to a distanee 0.970 by using the
solutions® They evidenced that the presence of dipoles didRATTLEalgorithm*? From now on LJ units are adopted with
not influence the static and dynamic properties of the chainthe Boltzmann constarkdz= 1.

in any significant fashion. Therefore, the dielectric permittiv-  The system is studied at several pressi?eand tem-

ity was derived by dropping the charges and by using onlyperaturesT; the values are listed in Table I. Each entry con-
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sists of ten independent runs at least. 1

The samples are equilibrated under Nesadersef®**
dynamics at the prescribed temperature and pressure until the
average displacement of the chains’ centers of mass is as
large as twice the mean end-to—end distance. Data are col-
lected during production runs in microcanonical conditions, £
by using a Verlet algorithm in velocity form. The time steps
adopted were in the range 19<At<3x10 3, increasing
with temperature, and the energy fluctuations in each run
were of orderAE/E~10 4. No adjustment of the tempera-
ture, e.g., by rescaling the velocities, was needed during the
run.

1ogl 0(1 'M.l chain)

Ill. RESULTS AND DISCUSSION
A. Static properties

In the thermodynamic region under study the dengity
changes by about 20% (G&<1.05), but the different
packings affect the chain conformations in a limited wWsge g
Fig. 10. Both the mean squared end-to—end distaﬁg‘ee 50
~12.0 and the mean squared gyration radRjs-2.0 vary
by less than 5%. The stiffness of the chain is quantified by
the characteristic rati€,, which is defined as

Cu=RE/b*(M—1). )

At T=1.4, P=0.93, andC;,=1.42. Under similar thermo- 1.2 — T T
dynamic conditions Bennemarat al. found C,o=1.52°

The structural changes in th® (T) region of interest are
investigated in more detail in Fig. 1, which plots the radial
distributions functions of the monomegs,,(r) and of the 0.8
centers of masg¢(r), as well as the chain structure factor
Schaid@), defined as &

1 N
Schaid d) = NM gl

M .
E <SIn(CI|rm,n rm’,n|)>. 3 0.4
mm’=1 i

C||rm,n_rm’,n|

I'm,n and the angular brackets denote the position okt
monomer in then-th chain and the ensemble average, re- P
spectively. Panelga) and (b) in Fig. 1 show the limited in- 0
fluence ofP andT on Sy,,{q) and on the average monomer r
radial distribution functiongme(r). Imon(r) exhibits more  FiG. 1. (@) Chain structure factor(b) radial distribution functions of the
structure at lower temperature and higher pressure with smakonomers, anéc) radial distribution functions of the centers of mass for all
shifts of the peakgéhe delta-like contribution due to adjacent the investigated temperatures and pressures. The inset corSpasés) in
. the regionq<2m/R,, with the lowq expansion for a discrete Gaussian

monomers along the cha_uns has bt_aen _rembvfs_%d releva_nt chain (dashed ling ee
changes are also seen in the radial distribution function of
the center of masg.(r), plotted in Fig. 1c), which evi-
dences the softness of the polymer coil with gyration radiusvhereb, , is the unit vector along the-th bond of the the
R¢. The topic has been recently discussed by Guenza wh@-th chain
presented results faj.,(r) of unentangled chairfS. 1

To chqracterize the sq—called “segmental” polymer dy- B n= (Fmn—Fms 1)- (6)
namics it is useful to define a “transverse” vectdy, at- b
tached to then-th molecule as follow$’

The vectort, , is locally orthogonal to the chain backbone

T :Nilt (4) tm,n'(rm—l,n_rm-¢—1,n):0 (1<m<M). (7)
=R The mean squared magnitude of the veckgrwill be de-
with noted byT? .
Figure 2a) shows the dependence Bf,andT? on the
tnn=(—1)"(by- 10— bmn), (5)  densityp. A correlation is evident, as well as a definite trend
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12.5 , ; T - is connected to then(+ 1)-th bond with a fixed angl& The
. 9 model is worked out analytically and yields the following
. B {21 relation betweerT? andRZ%;
« ® o T2 2 2b2( M- 1) )
12 o L4 B2 h2(M—1)
?e,? — : o o Ree+b (M 1)
=0 [ M—2)+ M-z XM= 13
o . . 20.5 ( )+( ) RZ (13
1151 o* The fit is slightly improvedFig. 2(b)] but the agreement is
. still limited by the roughness of the model.
P ! ! | A systematic study of the static intramolecular properties
08 . of a bead-spring polymeric system with different excluded
. monomeric volumes and bond lengths can be found in Refs.
21+ b) 48 and 49.
>.
20.81 B. Scaling of the translational dynamics
. The mean squared displacements of the terminal and
‘**20.6_ central monomers and of the centers of mass are defined as
1 N
. 91(1)= 5 2 (|Ar MO+ AT ppea (D[P, (14
2041 2N =1
1 N
. . t)=— Ar{Em™(t)[2), 15
T4 16 11'.2122 12 9s(V Nn§=:l<| v (O 139
€e 1 N
FIG. 2. (a) Density dependence d®%, (black symbols, left axjsand T2 )= — Ar. (D24 Ar )]2). 16
(open symbols, right axigor all the smulated P.T) pairs and(b) best-fit 94(1) 2N nzl (Arn O+ [Arnm®]) (16)

of T2 vs RZ, (symbol3 with the linear law derived by combining Ec@)
and(12) with b=1.01(dotted ling. The continuous line is a fit with E413)

with b=0.94. The actual bond size Is=0.97.

Representative plots of;, g3, andg, are shown in Fig.
3(a). Four distinct dynamical regimes are clearly seen. At
short times {<0.1) the motion is ballisticg;=t2. At inter-
mediate times (0&%t<5) the monomers get trapped into

versus density: the denser the system, the smaller the vald@e cage of nearest neighbors, resulting in a plateau-like re-
of R, and the larger that oT2. Hence, there is a slight gion of theg;; up to this time the monomers’ behavior is
shrinking of the chains due to the non-bonded interactions. independent on the position along the chain. Trapping exhib-

By standard algebra one finds that
RZ2=(M—1)b?[1+ (M —2)cosb]

~(M—1)b%+2(M—2)b2 cos¥,

where

1 M—-1
cosf=
N(M—1)(M—2) n; =

N M-1
- 1
CoSO= ——~

N(M _2) &= =, <bmfl,n'bm,n>-

<bm,n' bm',n>

)
©)

(10

(11)

its marked non-Gaussian features. This is evidenced by the
non-Gaussian parametep which is defined as

3 (anl
075 JaroPy 7

Figure 3a) shows a typical plot ofv,. It is seen that in the
cage regimeay, is large.

Cage restructuring occurs close to the tithewhen a,
reaches its maximum. This is similar to what happens in
molecular liquids® However, att>t* molecular liquids un-
dergo free diffusion, but in polymers the connectivity drives
the motion of monomers to a subdiffusive regime, ig.,

o« t*i with x;<<1 depending on their positions along the chain:

Eq. (9) is derived by neglecting the correlations betweenx1=0.62, X,=0.69. For displacements larger th&, the
noncontiguous bonds. Under the same approximation on@onomer motion becomes diffusive with diffusion coeffi-

finds
T2=4M—10—8(M —3)cosd.

(12)

cientD defined as

gs(t)
6t

D=Ilim

t—oo

(18)

By combining Egs(9) and(12), a simple linear dependence
betweenT? andRZ, is found. Figure &) compares this el- At intermediate, i.e.t>t*, and long times the common

ementary result with the numerical results. Better agreemeriielief is that the finer details of the interactions between each
is provided by the freely rotating model where thh bond  monomer and its surroundings may be neglected and the
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T Q T T I/_, R2
1 R, 7 = - 7‘7/—0.4 Tdiffzﬁ_leje- (19
RY s ' P .
0 : P Then, the two regimes must be collapsed on master curves,
$ 703 whose shape depends on the particular monomer, if one de-
7 s . 7=0.7 o fines the reduced (;1uantitieg§/R§e and t/ 74 . It is worth
R e ™ P20 ,,° noting that the scaling features are more general than the
P Rouse model.
2 Indeed, Fig. 8) proves the above scaling procedure for
o a 01 all the thermodynamic states under investigation and evi-
-3 o° lt' °°°aooocooomoo oo o dences a time-temperature-pressure superposition principle
: (,) |1 |3 ° ‘I‘ 0 (TTPSB when the mean squared displacemeptsgs, and

g, exceed the squared bead si@é. Such displacements

occur when the cage relaxes. In this regime the connectivity
plays a role and the displacement of the central bond and the
one of the terminal bond are different, the latter being larger.
In particular, the scaling works nicely even for the terminal
monomers whose dynamics is not well described by the
Rouse model.

In Sec. llIC, it will be shown that TTPSP holds for the
rotational dynamics as well.

10glO (g,'/ 2e)

C. Scaling of the rotational dynamics

The large-scale and the local reorientation are now char-
acterized. To this aim, the rotational correlation functions of
the end—to—end vector, the “transverse” vector, and the dif-
ferent bonds of the chain are defined as

4 3 ) 1 0
log o(#/Taisr)

FIG. 3. (@) Mean squared displacemerilsft axis) of the center of masgs;

(solid line), the central monomayg; (dotted ling, and the terminal monomer

g, (dot-dashed line The open circles represent the non-Gaussian parameter
a, (right axi9, the dotted line being a guide for the eye aiwl master
curves ofg,, gz, andg, in units of Rge for all the investigated thermody-
namic states. Refer to the curves of pa@lto identify the corresponding
master curves. The time is rescaled by the diffusion timg. The inset
shows how the scaled subdiffusive regime of the central monomer merges
with the scaled diffusive regime of the center of mass at long times.

1 N
Ced)= gz 2, (RulD)-Ra(0)), (20

1 N
C.(0=7z 2, (Tn(D)Ta(0), (21)
1n=

1 N

Cimn(D= 2 (Plbmn(1)bra(0)]), (22)
motion is accounted for by average viscoelastic forces. ThisvhereP,(x) is the Legendre polynomial of ordeandR,, is
is a delicate point. As an example, in Sec. Il C, it will be the end—to—end vector of tlreth molecule. The central and
shown that the rotational correlation functions are stretchethe terminal bonds will receive special attention and their
and in Sec. lllH, that stiffness effects must be included tocorrelation functions will be denoted, respectively, as
model also the relaxation of flexible chains. Both findings Cron()=Crsn (1) 23)
warn that the monomer-background interaction has not- (¢ (GO
trivial features which, expectedly, are poorly accounted for Crun(H)= [ Crapy(t)+Copn(B)].
by mean-field approaches. Nonetheless, detailed information
about short-range motions of the chain is customarily sacri- ~ The mean rotational correlation times are also of in-
ficed to gain a tractable model for the long-range motionsterest. They are defined as the area be@yit)
The Rouse model for a melt of unentangled chains is a well-
known examplé®3®*The model gives an inherently poor ac-
count of the fast and very localized motions of the chain ends
whereas it predicts the subdiffusion of the inner monomers In Fig. 4 representative plots of the above correlation
with x;=0.52° The larger value of, is attributed to the functions are shown. Each correlation function exhibits dif-
shortness of the chain leading to an early crossover from thierent decay regimes at different times. This is emphasized
subdiffusive to the free diffusion reginfe. by the insets of Fig. 4 which plot the data so as to convert

The viscoelastic picture of the polymer motion exhibits possible stretched exponentials with stretching parame@ter
scaling properties. Figure(® shows that the crossover be- into straight lines with slopes. The reorientation oRg is
tween the subdiffusive and the diffusive regimes of thethe slowest process. The decay@i(t) is fairly well fitted
monomers occurs when their mean squared displacemeatross all the time window by a stretched exponential with
equalsR2,. This happens at the so-called diffusion timg  stretching parametg8= 0.84 (not shown. The other decays,

(29)

Ti=focCi(t)dt.

0

(25
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all the rotational correlation functions under study are af-
fected by the trapping occurring during the cage dynamics in
a small but appreciable way. The localization manifests itself
as a plateau-like region located in the same time region
where also the linear displacement exhibits a similar behav-
ior (see Fig. 3. Itis interesting to compare the results on the
I-dependence of the rotational correlation functions of poly-
mers with the one which is evidenced by simulations of su-
percooled diatomic molecul®® and network-forming
liquids>* It was found that the rotational correlation func-
tions in the ballistic regime exhibit a larger drop on increas-
ing |, reach a plateau-like region in the cage regime and
vanish for times longer than the structural relaxation
times®?~%*As a consequence, the mean rotational correlation
times become shorter on increasingf~>*Similar effects on
the correlation functions and the related correlation times of
the central and terminal bonds are seen in Figs. 4 and 8,
respectively. The plateau value in the polymer melt is higher
than in diatomic molecules even if the temperature is
higheP?°3 and comparable to the one observed in network-
forming liquids®* The studies also pointed out that the rota-
tional correlations of diatomic molecules die tat 2t* for
<4 at the lowest temperaturds~0.55%%2 In the present
case, due to the connectivity of the polymer chain, they ex-
tend for times being at least about 40 times longer ttfan
even for the terminal bonds &t=0.7 [see Figs. @) and 4.

The scaling properties of the displacement which were
discussed in Sec. Il B suggest that the reorientation process
may exhibit the same feature too. To this aim the reduced
time t/7 is defined, 7 being the time whereC {7)=1/e.
Over all the thermodynamic region under investigation it is
found that the ratiorgy /7= 3.40+0.18 (see below, Fig. B
The Rouse model predicts;y /7= 7*/24~=4.0634%

First, we test the scaling for one selected isobar and one
selected isotherm. Figures 5 and 6 show the resulting master
curves proving that the scaling works at long times, ite.,
>t*, for all the rotational correlation functions. The scaling
is lost at short times. This was already found by simulations

logo? of supercooled diatomic molecufés®and network-forming
FIG. 4. (a) and (b) the rotational correlation functions for=1 and(c) | I',qUIdS'54 Flgure 7 pIOI_S the master curves of all the rota-
=2 for T=0.7, 1.8, andP=2.0. The insets emphasize the different decay tional correlation functions of the polymer melt for the ther-
regimes of each correlation function. See text for details. modynamic states listed in Table I. We also plot the rota-
tional correlation functionC,; which is of interest for the
dielectric spectroscopy and will be defined and discussed in
ec. Il G. Together with the findings of Sec. lliBee Fig.

, Fig. 7 proves that TTPSP works in the thermodynamic
gegion under study and that the master curves result by scal-
ing in terms of the single time scate(or equivalentlyrg).

Additional evidence about the TTPSP is collected by
comparingr with the mean rotational correlation times.
Notice thatr.e=7. It is also of interest to evaluate by Eq.
(25) the mean bond rotational correlation timg,, from the
mean bond correlation function

[

log;o (-InC;)

pertaining to local reorientation processes, are faster and n
fitted by stretched exponentials. FOf y(t), | =1,2 the de-
cay is accounted for by suitable normal-mode expansion
which will be discussed elsewhetkeFigure 4 shows that, at
T=0.7 andP=2.0, C(¢ 1)(t) andC; 1y(t) are virtually iden-
tical for t=10 but at longer times the former decays more
slowly. This is understood by referring to FigaB It is seen
that the corresponding mean square displacenggiity and
g4(t) are coincident fot<t*~10 whereas the connectivity

slows down the displacements of the central bond at longer 1 Mt
times. Correlation functions with=2 have faster decays and Cad)=1—7 > Cm(b). (26)
are therefore less able to discriminate between the position of m=1
the monomers. This explains why in Fig. @¢(t) and Figure 8 shows the dependence of the the ratjés on

C,(t) with =2 are closer to each other than the corre-the density for all the R, T) states investigated. It is seen
sponding curves with=1. The insets of Fig. 4 evidence that that the ratios are constant and depend on the specific rota-
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FIG. 5. Master curves of all the rotational correlation functions for the F|g. 6. Master curves of all the rotational correlation functions for the
isobarP=2.0 and the temperaturgs=0.7, 1.2, and 1.8. The insets empha- isotherm atT=1.0 and the pressurds=0.1, 2.0, and 4.0. The insets em-
size the different decay regimes of each correlation function. phasize the different decay regimes of each correlation function.

tional correlation function. This finding is readily explained also worth noting. For a melt of Lennard—Jones dimers at
in that 7; is mostly affected by the long-time decay Gf(t) high temperaturer, /7, was found to be nearly equal 6l

which scales. +1)/2 in agreement with the diffusion mod¥lin deeply
Some comments on the ratios between the rotational cosupercooled states one hag/ 7~ 1, due to the presence of
relation times presented in Fig. 8 are in order. jump-like motion. For the present polymeric system, the end

The ratior/ 7 is slightly larger than 1; this is due to the and the central bonds hawe; 1)/ 7(;2~5.7 andr 1)/ 7(c )
stretching of the correlation functid@.{t) (8=0.84). The ~9.3, respectively. The fact that both ratios exceed the pre-
ratio 74t /7 has been discussed above. The ratig)/7,  diction of the diffusion model is to be ascribed to the higher
<1 is mainly due to the lower connectivity of the chain endsconnectivity of the bonds in the chain with respect to the
which have larger free volume accessible to them, with rebond of the dimer. The same effect with larger magnitude
spect to that available for the other monomers, e.g., the cewas seen in MD simulations of the local chain motion in
tral monomef.”® 7, is comparable tar.1); this is due to  amorphous polyethylene and a freely rotating chain mdtiel.
the similar behavior of the inner bonds, which hides the efdt was found that the rotational correlation times of a bond
fect of the ones located on the chain ends. vector ¢ defined along the chain axis have the ratio

The ratio of the correlation times with differentanks is T(c,|:1)/7(a,:2)~102. The study also addressed the reorien-
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FIG. 8. Dependence of the raties/7 on the density for all the simulated
(P,T) states. The dotted lines are the best-fit valugg/7=3.40+0.18,
Tee/ 7=1.04£0.03,  710)/7=(3.7£0.4)X107Y,  7,,,/7=(2.7£0.1)
X107t 7 /m=(2.620.3)X107Y, 74y /7= (1.2520.8)X 1071, 7o) /T
=(4.0£0.4)x107%, 7, [7=(2.83:0.16)x1072, and y/7=(2.20
+0.15)x 1072,

ropy and accounts for the lower ratiogy 1)/ 7(m 2 for m
=c,t, andr 1y/7, with respect to Ref. 56. The influence of
the polymer structure on the anisotropy was seen in fully
atomistic simulations and experiments on polyisoprene
melts®”*8 which evidenced a less pronounced anisotropy of
the local motion and lower values of the ratig. )/ 7 2
than Ref. 56. In particular; 1)/ 7(¢ 2~6.1 in Ref. 57, which
is quite close to our result.
The results of this section extend the findings of Sec.
111 B and complete the evidence of the TTPSP scaling of both
the translational and the rotational dynamics in the thermo-
dynamic region under study. The scaling procedure applies
to orientational correlation functions involving quite differ-
ent observablegsend—to—end vector, terminal and central
bond, transverse vectoand different ranks of the Legendre
polynomials. In Sec. 1l G it will be shown that it also holds
true for the correlation functioiC,y(t) of interest for the
dielectric relaxation which has rark=1 and is affected by
FIG. 7. Master curves of all the rotational correlation functions. The plotPOth the local and large-scale motion in a correlated way.
collects all the cases in thé(T) region under studysee Table)l Cy(t) is Numerical evidence of the TTPSP scaling in polymer
the correlation function of the overall polarization, Eg8). melts was reported in Ref. 38 for chains wih= 10 mono-
mers, mutual Lennard—Jones interactions, and good stiffness
of the bonds. It was shown that the incoherent intermediate
tation of a “bisector” a and an “out-of-plane”b vector.  dynamic structure factor evaluatedegt27/b, the average
These “perpendicular” vectors with respect to the chain axisbond orientational correlation function, and the end—to—end
exhibited faster dynamlcs than the bond veatorr, -,y  correlation function(both with rankl =2) may be collapsed
~T(p=1)~ (3—5X10" )T(C| 1)- In our case we find on single curves at long times. Moreover, the temperature
7 [ 7(c,1y=7.6X107 2. Hence, the relaxation of the vectors dependence of, and the correlation timery of the the
parallel to the chaln axis is slower than the vectors perpenincoherent intermediate dynamic structure factor for different
dicular to it. The chain is rapidly tumbling around the chain g-values was plotted for different isobars. The plotted ranges
axis or a segment of it, while this latter is slowly changing itswere 0.45<T=<1.0 for P=0.5, 0.46T=<2.0 forP=1, and
direction following the relaxation of the locgsurrounding  0.52<T=<2.0 for P=2. For each isobar the temperature de-
structure. pendence of the different correlation times was found to be
The anisotropy of the relaxations of the vector parallel torather similar even if deviations are apparent at higher tem-
the chain axis and of the vectors perpendicular to it als@eratures fog-values larger than the maximum of the static
depends on the chain properties. In our model the polymer istructure factor.
completely flexible because of the absence of torsional po- Scaling is predicted by the Mode-Coupling thebgs
tentials and constant bond angles. This reduces the anisatell as by the Rouse mod&:°The Mode-Coupling theory

logo(#/7)
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provided a recent microscopic justification of the Rouse
model in polymer melts® However, the physical basis of the
scaling is rather simple in that at long timeg;= R§5/6D is

the only natural time scale for a melt of unentangled chains
with size R, drifting with diffusion coefficientD. The scal-

ing hypothesis holds across the regionat* where the sur-
roundings of the chain may be modeled in terms of effective,
average viscoelastic forces.

The existence of a unique scaling factor well abdye
was confirmed by studies on the dynamics of polyisoprene
melts performed by different experimental techniquéds
electric, time resolved and photon correlation spectroscopy,
and depolarized Rayleigh and neutron scatterifig® The
characteristic relaxation times followed, apart from a con-
stant factor, the same behavior with temperature. In particu-
lar, the dielectric relaxation timegank|=1) related to the
dipole perpendicular to the chain contour and the photocor-
relation characteristic timegank |=2) had a similar time
scale®® On the other hand, recent experiments by dielectric
relaxation on oligomeric and polymeric melts carried out .
over a wide pressure and temperature rédhge® have @
shown that the universal scaling behavior is valid for tem- =~
peratures well abovéy and breaks down in an intermediate
regime still above the glass transition. MD simulations of a
melt of dimers M =2) also showed that; (for I=1—4)
and the rotational diffusion coefficie®, * exhibit at inter- Lsl ]
mediate temperature the same scaling law, which is lost at T S Y
the lowest and the highest temperatutes’ uT

The scaling properties depend on the length scale under o
investigation so the complete understanding of the above e>§—'hG-fénmﬁOsucsf"z'i:zst"i‘:zgre‘;;lz(z ;Hs gf"t’ﬁzuifoti’;%;hfﬁmgegatluge-
perimental and r_1umer|cal results needs the clear assessmef , 1.4, and 1.8 with Eq27). The inset plots the activation voiunzte\’/ vs’
of the scales which are probed. As an example, neutron scae temperature. Pang) plots the isobar®=0.1, 0.93, 2.0, and 3.0. The
tering evidenced that the dynamic structure fa@gg,t) in  continuous lines are Arrhenius fits, E@8). The dashed lines are VFT fits,
po'ybutadiene evaluated qtvalues around the maximum of Eq. (29). The insets show the activation eneigyy of Eq. (28) and the VFT
the static structure factan. (corresponding to the inter- temPperaturel of Eg. (29
chain distance scales with the macroscopic viscosity.

However, at higheg-values, e.g., the first valley of the static The continuous lines in Fig.(8) are the best-fit curves.
structure factor, a decoupling is observed at lowerrhe inset of Fig. @) shows thatAV is constant at high
temperature8’ The g-dependence of the time-temperature emperature &V,,1=0.34+ 0.01) and that it increases on de-
superposition principle in the-relaxation regime of a simu-  creasing the temperature. This behavior has been reported by
lated polymer melt of unentangled chains has been alsggyerg] experimentf3269-"1and numerical studié% on
discussed® It was found that the scaling of the coherent jinear polymeric melts. At lowT the increase oV is be-
intermediate scattering function fails at high temperaturegieved to be reminiscent of the postulat&ddependence of
and highg-values §~2qp,y). Violations were also noticed  the cooperative volum¥ At higher temperatures, i.e., above
in the early part of the decay on approaching the so-calleghe critical limit for the size of cooperatively rearranging
critical temperaturd’; from above. regionsAV denotes a volume barrier. Previous experiments
reportedAV to be comparable tothe monomer size few
degrees abové,, and to attain a limit of 30%-40% of the
monomer size at higher temperatur®s! This compares in a
satisfactory way with the present work.

log,, T

D. Density and temperature dependence
of the scaling time 7

The previous discussion proved thatis the relevant The temperature dependencerois shown in Fig. &)
time scale of the present polymer model. This section prefor different isobars. The Arrhenius law
sents the temperature and pressure behavior of this quantity. E.(P)

The pressure dependenceofs shown in Fig. 9a) for =T ex;{ ac ) (28)
different isotherms. The curves are fitted by T

PAV does not fit the different isobars over the whole range, even if
T=T(p=0) ex%? , (27)  the agreement improves at higher temperatures and/or short

times. A similar conclusion is drawn if one uses the Vogel—
whereAV is the activation volume per monomeric unit. Fulcher—TammanVFT) equatio’®
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S DTo(P) T
=ToveT XA 7 7By (29

The discrepancy is expected in that it is experimentally
well known that a crossover from an Arrhenius to super-
Arrhenius behavior occurs several degrees abl@v.é4 This
motivated us to split the whole temperature range into two
intervals in order to properly account for the different depen-
dencies. According to our data, the Arrhenius regime extends —
over 1=T=<1.8 (r=<350) whereas the VFT regime is found
at 0.<T=<1 (7=350). It must be pointed out that, even if
alternative functions can be employed, the VFT equation is 1
rather adequate to fit the super-Arrhenius beha6t.

In the Arrhenius regime the attempt time was set§o
=5.64 for all the isobars and only the activation enelgy,
was adjusted. The best fits are plotted in Fign) 9The inset
of Fig. 9b) shows that the best-fit values &, depend
linearly on the pressur® according toE,.=Ey+vP with

1.2

FIG. 10. Volume per monomer versus pressiiogrer axis, open symbols
and temperatur@upper axis, black symbolsThe continuous and the dashed

v=0.36+0.02 andEy=3.20+0.02, i.e., the energy barrier
increases with density. The quantity must be coincident
with the high-temperaturéHT) activation volume in that
AVyr=T(dIn79P)=v. In fact, the fit on the isobaric lines
yields AV7r=0.34+0.01 [see the inset of Fig.(8)]. The

agreement is a good cross-check of the two independent fit

procedures.

In the VFT regime the best-fit procedure kept fixed

‘Tover=10.5 andD =11 and adjusted only(P) for the dif-
ferent isobars. The assumption of keeping fixgger andD

can be justified by the experimental evidence that, at least f
moderate compression, the main influence of pressure on tQS

VFT parameters concerflg,, whereasrq,er andD are vir-

tually unchanged>"®-8°The best-fit results are plotted in

Fig. 9b).
The inset of Fig. &) shows the linear behavior of
To(P) versusP. The linear regressiofy(P)=Ty(0)+wP

polymeric melts’®:69.79.81.82

thermal effects on the polymer dynamiég817:78.8% simi-

lines are the best-fit with the Tait E¢30). The parameters am,=0.876
+0.004,A;=0.161+0.007, A,=(6.1+0.4)X 1072, B,=7.9+0.1, andB,
=1.55+0.04.

B(T)=Boexd —B1T],

for real polymersC=0.0894%

A comparison of the best-fit parameters of the present
system with the ones of real polymers would be interesting.
The Tait equation constrains the thermodynamic variaBles

And T if V(0,T) andB(T) are known.B(T) is proportional

the isothemal bulk modulus(T) at P=0.
B(T)=CK(T), (31)

with K~ 1=—=V~Y(9V/9P)|p—_o. In our model, 0.5B(T)
<2.5in LJ units. For real polymers far from the glassy state
B(T)~300 MPa. Then, the lowest pressure under study, i.e.,
P=0.1, corresponds to pressures in the range 12—60 MPa,

Abt far from the atmospheric pressure conditiBfB(T)

rand it is consistent, at least for 1 e highest valu®=4.0 is in the range of higher pres-
moderate pressures, with both the free volume model and tl”qu

Adam Gibbs model extended to deal with the density an

res experimentally investigated, 0.48-2.4 GPa. The con-

Yersion ofV(0,T) from LJ units to the real world ones would

be largely arbitrary due to the highly coarse-grained picture

lar pressure dependence of the VFT parameters was reportgfi the polymer chain under study and will be not pursued.

in a MD simulation of polyethylene with conformational

details’? In another MD simulation on oligomer¢bead-
spring model with poly-dimethylsiloxanéENE) potential
and different cut-off of the LJ potentialM =10) a value of
To(P=1)=0.34 was foun® which is slightly higher than
the valueTo(P=1)=0.21 of the present study.

E. State equation

The dependence of the specific volume Drand P is

plotted in Fig. 10. It is well fitted by the Tait equation, com-
monly used as a phenomenological equation of state of poly-

meric melts®*>

P
V(P,T)=V(0,T)< 1-C Inﬁ)'

V(O,T)=Ap+A; T+A,T?, (30

The lack of information prevents one to relate the tempera-
ture dependencies &(T) andV(0,T). However, they may
be compared by using the ratio between the fractional
changes ofB(T) and V(0,T) with the temperaturery,
which may be expressed as

rr=Bq/apg, (32
where ap, is the volume expansion coefficient Bt=0
1(oV A+2A,T
“PO:V<E)‘P_OZAO+A1T+A2T2' (339

Comparingr as obtained from the simulation with the
ones of real polymers provides a good test of the meaning-
fulness of using the Tait equation as fit function.

Table Il lists the ratior+ for the present model and for
some selected polymers. The comparison is quite reassuring
about the consistency between the thermodynamic states of
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TABLE II. The dimensionless ratior=B, /ap, for the present model and  not the unique variable governing the dynamics. This rules
for the polymers: polybutadien€®B), cis-abundance poly-isoprer®l1). - 4yt any relation between the relaxation time and the density

3,4) abundance polyisopren@l12), poly-dimethylsiloxane(PDMS), and . . .
;tac)tic pon-styrenF:éa)l;S.p N12) poly Y ( ) alone, e.g., the Doolittle-like equation

_ B

Polymer Ref. M rr =1 ex% — ), (34)
Present work - 10 5.55-6.41 po—p
TransPB 106 ~2000 5.65-5.95 whereB andp, are constant. Eq:34) does not work also if
i‘;';‘; 182 “2888 g-gg‘g-gi one chooses two different sets of parameRrg,, andry,
PI1 106 1500 5.96—6 31 one for all Fhe isothermal pa_lths an_d one for a!l the isobaric
PI2 106 ~1500 6.03—6.29 paths. The issue of the density scaling will be discussed more
PDMS 107 ~13 7.37-7.64 in detail in a forthcoming papét.
PDMS 107 ~50 6.87-6.97 Figure 11 prompts the question if the temperature or the
PDMS 107 ~80 6.75-7.05 density is a dominant control parameter of the dynamics or
aPs 108 - 5.75-5.85

the two quantities give rise to comparable effects. The pa-
rameter of choic®?*to quantify the relative contributions of
the temperature and the density to the dynamics along iso-

. bars is the ratio of the isobarie, and the isochroniax,
the present coarse-grained model and those of real SySten?é%(pansivities to be defined as

The small discrepancies which are seen(fIDMS) deserve

further work. 10V
ap_v(ﬁ Pl (35)
F. Density and thermal effects on the dynamics o :l ﬂ (36)
T V\aT T'

The knowledge of the equation of state allows one to
analyze the density dependence of the dynamics in greatéf the dynamics is dominated by temperature activated pro-
detail. Figure 11 plots log 7 versus the density for all the cesse$a,|/ap is much larger than one, the opposite holds if
isobars and isotherms under investigation. Similar plots aréhe volume rules the dynamics. A ratio of order unity means
well known from the experiments:**®For a given density that the two quantities are equally important. The inset of
increase, the more efficient way to slow down the system isig. 11 plots the pressure dependencéaf/ap for differ-
by isobaric cooling rather than by isothermal compression. Irent’7. The ratio increases with the pressure at a giveit
fact, by isobarically cooling a molecular liquid, both the ther- decreases with increasingat a given pressure and reaches a
mal energy and the free volume available to the moleculefimiting value at larger. Such a behavior suggests that when
are decreased, whereas by isothermally compressing it onjie dynamics is fagshortr) the temperature is the dominant
the free volume changes. The finding that the density depervariable. On the other hand, if the dynamics is slowed down
dence of log, 7 for different isobars and isotherms does not(long7) the available free volume becomes more important.
collapse on a master curve proves that the density by itself i must be stressed that the counter-intuitive finding that the

dynamics is more activated at higher pressures is supported

also by experimental resufts,and explained by the in-
— T — creased height of the potential energy barriers thus leading to
a more activated behavior.

The ratios|a,|/ap by the present study compare well
— with the experimental resultfx |/ ap estimated for longis
between 0.5 and 1 for low molecular van der Waals liquids,
between 1 and 2.8 for polymeric systems, and finally much
higher than 1 in the very special case of hydrogen-bonded
systems, following a pattern of decreasing importance of vol-
ume with respect to that of temperature activated
B dynamic§3'25'28'70’88'89

Our polymer model appears to be at the border line be-
tween polymers and van der Waals liquids, with a dynamics
. ) ) , , , T to which the fluctuations of the the thermal energy and the

075 08 08 09 095 1 1.05 density contribute to the same extent.

FIG. 11. Behavior of the timescale vs the density along isothermal and

isobaric paths. The symbols are results from the simulation, the dashed lines . . .

are the isothermal fit curves displayed in Figa)%nd the continuous lines G- Dielectric relaxation of type-A polymers:
are the isobaric fit curves displayed in Figbp The inset shows the pres- mode correlations

sure dependence of the ratio between the isobaric and isochronic expansivi- . . .
ties. The lines correspond =47 (circles, 64 (square} 148 (diamonds, The dielectric spectroscopy probes the dynamics of

352 (up triangles, and 524(down triangles polymeric systems by measuring the complex permittivity
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e(w), which is related to the correlation functi@,(t) of the  motion of P, (t). It is worth noting thatr,; is comparable
total polarizationP,.(t) by the following relations: with the mean bond rotational correlation timg, (see Fig.

8).
e(w)—&o d i ; ,90-92 ical i th
e _}{Ecm (0)=1—i0ACyl(w), (37 In most experiment&d and numerical studie¥,the
whereg,, is the permittivity due to the electronic polarization

correlation between the parallel and the perpendicular polar-
ization is neglected, i.e.,

(i.e., not orientationa) Ae is the overall orientational dielec- (Py(1)-PL(0))=(Py(0)-P,(t))=0. (42)

tric strength,F denotes the Fourier transform, and

The assumption is motivated by the different time scales of
(Prot(t) - Piot(0)) P,(t) and P, (t). The normal-mode relaxation time, related
Crof()= m (38 to the end—to—end relaxation time,, increases with the
e e monomer numbeM, 7.<M? for oligomers, andrecM34
We are interested in type-A polymefaccording to the for entangled systen®$:°®°30n the contrary, the segmental
definition of Stockmayéh), i.e., linear polymers possessing relaxation time, related to, , depends much less o, and
a nonzero dipole component which is parallel to the chairis almost constant for entangled systems.
backbone. In such polymers the dielectric experiments re- If the decoupling betweeR,(t) and P, (t) is safe for
vealed the existence of various types of relaxationhigh polymers, it becomes questionable for oligomers since
processes’ a “normal-mode” (' -) relaxation related to the the related time scales,, and 7, are closer. In the present
overall dipoleP,(t) parallel to the chain backbone, probing system 7, /7.e=7, /[7=0.0283-0.0016, close to the ratio
the reorientation of the end—to—end vector, and the so-called, /7.¢~0.05 found in poly-propylene-glycplwith M =14
“segmental” (a-) relaxation, related to the overall perpen- at high T,% and the ratior, / 7<= 0.03+0.01 for poly-cis-
dicular dipoleP, (t), probing shorter length and time scales. 1,4-isoprene withM~6—7 by extrapolating data from
The total polarization of a type-A polymer is written as higher molecular weigH®°° Neglecting the cross terms be-
tween the parallel and perpendicular components leads to the

P 1) =Py () +P_(1) approximated total polarization correlation function given by
N M-—1 M-—1 the sum of two independent correlation functions, related to
=> | Y bmntus > tonl- (39  the parallel and the perpendicular polarizations
n=1 m=1 ' m=2
, o Crol) =Ciei(t) =2y Ced t) +a, C, (1), (43)
The average value of the static polarization for the two
components is wherea, anda, are the relative dielectric strengths
(Py(0)-Py(0))= () °Rad b2, - Aey (1) R a4
(40) " AetAs; () ?ReH(u))?TI D

(PL(0)-P,(0))=(p,)?T?.

Equation(39) neglects the possible collective character
of the dielectric relaxation. This follows from well-known
experimental evidences that in most polymers, e.g., polyiso-

prene, the dipole moment is small and the intermolecular angleighted sum of two independent terms pertaining to well-
intramolecular dipole—dipole interactions are negligifle.  efineq dynamical processes, the reorientation of the end—

In the present model the parallel and the transverse COMg_end, and the “segmental’ vectors. The strength ratio is
ponents of the permanent dipole associated to each mono-

Ae, (1, )2T2b?
a = = .
L Ag+As; (u) PRt (1, )?T2b?

(45

Equation (43) expresses the dielectric relaxation as a

meric unit were set ta;=1 andu, = 1.5, respectively. The a (M”)ZRge
i i i 0 —= . (46)
ratio corresponds tois polyisoprené”® The average modulus YA Y
; . oar (u)TIb
of the transverse dipole attached to each monomer is
<(pl)z>:2(m)2(1+cosg) [see Eq. (11)] with cosd According to Fig. 2a) the ratio between the normal and

=0.173 atT=1.0, P=2.0, and a small dependence on thethe segmental strengths decreases by increasing the density.
thermodynamic state. If the transverse dipole moment is welBimilar eff%cts are reported by experiméfit® and
defined, one expectd(0)- P, (0))=0. For all the investi- simulations’

gated thermodynamic states it is found To assess the approximation given by E4@), Cy(t)
and C¥(t) are compared in Fig. 12 foF=0.7 andP=2.0.
(Py(0)-P.(0)) The situation is analogous for the othé?,T) points. The

=0.016-0.48. 4D agreement betwee@(t) and C(t) is fairly good at short

V(PE)(PF) ) . SO ;
and long times, but decreases at intermediate times, evidenc-
We are now in a position to deriv@,(t) from Eqgs.(38) ing some degree of cross-correlation between the normal and
and (39). Ciy(t) exhibits the same scaling features of thethe segmental motion. The discrepancy raises at the time
other correlation functiongsee Fig. 7. Having definedr,,;,  scalet* of the cage restructuring, reaches its maximurh at
by Eq.(25) one findsry/ 7= Tiot/7=(2.6+0.3)X 10 (Fig.  ~ 73=7.d9, then it vanishes @& r.,. 75 is the decay time
8). The ratio reflects the non-negligible weight of the fastof the third Rouse mode of the chain, to be defined in a more
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FIG. 12. Comparison betweeB,y, Cy;, Cee, C, (left axis), and Cyy
—Cgi; (right axis for T=0.7 andP=2.0.
0.03

precise way below. The scenario represented in Fig. 12 holds'if
also at different temperatures and pressures. As an exampleg ‘
the isobarP=2.0 is shown in Fig. 13.

These findings are readily intepreted. ktt* the mo-
tion occurs inside the cage, no correlations exist between the
frozen overall chain conformation and the fast dynamics of
the monomers, which is largely independent on their position
along the chair(see Fig. 4. At t>t* the cage structure re-
laxes and the motion becomes collective, i.e., the correla- logo(4/7)

tions between the monomers are not negllglble. Thg bongIG. 13. (a) Representative plots of the correlation functidhg(t) (solid

dY“am'CS IS _deper_ldent on th_e position 3'9”9 the chsee lines) andCy;(t) (dotted lineg for the temperature¥=0.7, 1.2, and 1.8 and
Fig. 4). In this regime appreciable correlations between the=2.0; the arrows mark the timg where the nongaussian parameser
parallel and the normal components of the polarization areeaches its maximum value for each temperat(iseComparison between
expected. The build-up of the correlationstatt* occurs in the scaled function€(t/7) —Ci(t/7) for all the temperatures on the isobar
the presence of an antagonistic phenomenon, namely, the f=20

nite correlation times of the collective motions due to the

qngoing deforr.nat'ion of the chain. The Iopgest correlationtimeS only two modesX,(t) and X,(t), still survive. But
tlmes set the lifetime of the Cross C(_)rrelatlons betV\_/een thg(z(t) does not contribute toRee, and thus toP(t),
different components of the polarization. The collective mo-p¢, ,s3:35

tions of the polymer chain are usually described in terms of

M modesX,(t) with p=0,...M —1 which are expressed as
linear combination of the positions of thé monomers*3°
The p-th mode involves roughly the collective motion of
M/(p+1) monomers during the deformation of the chain.

0.01F

P(t)= —4%p:20(jdxp(t). (48)

The above results suggest that the usual assumption of ne-

According to the Rouse model, theth mode X (t) has glecting the cross-correlation terms in the dipolar correlation
' P

exponential correlation function with decay timg given function Cy,({t) may be que;noned at least for oligomeric
by3435 systems, where the correlations between parallel and perpen-

dicular motions are more important. Our results point out

that the correlations are detectable even,jf 7, =35. Thus,
szT_;_ (47) th_e _a_nalysis of the correlgtion f_unc_tidhot_(t), or of the per-

mittivity &(w), could be misleading if a simple superposition
of “normal-mode” and “segmental” processes is imposed.

The first mode has the longest correlation time=7., ~ As an example, Fig. 14) shows the realq{’) and the imagi-

=17. For t>t* the cage restructuring allows the onset of nary (¢”) parts of the permittivity, as calculated by Eg7)
correlations between the end—to—end ved®y and the via the Fourier transform of the data in Fig.(aB The char-
transverse on&. As time goes by, the increase of the corre-acteristic two-peak structure fer’(v) appears: the peak at
lation is slowed down by the decreasing number of correlower frequencies is related to “normal-mode” process
lated collective modes, and is finally inhibited when only a[ C.{t)] and the one at higher frequencies to the “segmen-
few of them survive. According to Fig. 12, the largest corre-tal” one [C, (t)]. As it can be noted, the exact permittivity,
lations are found for times comparable tg. For longer i.e. the one evaluated b@(t), is characterized by broader
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1 T dent of the molecular weigh¥l, whereas the normal-mode
S N component depends at least in a quadratic way. Then, on
0.8 K, e B increasingM the two components yield two separate peaks
| of the permittivity e(w). The overlap of the peaks is made
.\ negligible when the chains are still poorly entangled, i.e., for
g 0.61- o7 N 7=12% % o7m1s M=402% In this short-chain regime changing the chain
B A 1 length simply shifts the normal-mode peak and leaves the
Y04l - segmental mode virtually unaffected, so that the master
curves of each peak & =10 provide information on their
0ok . N | shape also foM <40.
' L - A First, the normal-mode peak is considered. It is derived
"""""" ~ from Eg. (37) by replacingC,y; with the correlation function
0_5 ~ '3 '2 _'1 0 of the parallel polarizatior?;(t) which is proportional to
log gV Ccd{t) according to the relation
0.4 T T ' T T R.\2
<P|.<0>-P<t)>=(“”Tee) Ced ). (49

In the framework of the Rouse theory the correlation func-
tion of the end—to—end vector is expressetf as

M-1

8
Codt)= p%d ﬂ_—pzexp( —t/my). (50)
According to Eq.(50) the decay is exponential at long times
with the decay time of the first mods and is stretched at
shorter times due to the presence of additional modes. A
0 . ! . b . L . ! . typical comparison between the Rouse model and our results
0 02 0.4 0.6 0.8 1 is provided by Fig. 16 which compares the master curve
e of Ceeat P=2.0 with Eq.(50) wherer, is adjusted to set the
FIG. 14. () Representative plots of the complex permittivities as computedScale of Eq(47). The agreement is quite good even if some
from the correlation function€,(t) (solid lineg and C (1) (dotted liney  deviation is seen for 0.84t/7<1 where the Rouse model
for the temperature¥=0.7, 1.2, and 1.8 anBi=2.0; (b) Cole—Cole plotof  pes not fit accurately the stretched-exponential regime with
the complex permittivities of pané#) for T=1.2. stretching paramete8=0.82. The deviations are also seen
in the plot of&¢” which is shown in Fig. 1&). Finally, Fig.

peaks compared to the approximation derived @ (t). 15 confirms once more that the scaling procedure is more
Moreover, the exact permittivity of the normal mode is robust than the Rouse model. The disagreement may be par-
higher than the approximated one whereas the opposite o8ally ascribed to the well-known stretched-exponential de-
curs for the segmental mode. Such discrepancies are empHzy of the correlation functions of the modes which is seen
sized by plotting the imaginary versus the real part of thefor bead-rod and bead-spring models of oligomeric
permittivity (the so-called Cole—Cole ploteach relaxation ~System$>°%%" This differs from the simple exponentials
process is related to a semicircle, the low-frequency regionWith decay times given by Eq47) which are predicted by
where the “normal-mode” is located, corresponds to high the Rouse model. Another source of inadequacy is the fact
values [see Fig. 14)].°® The presence of non-negligible the Rouse model poorly accounts for the fast motions local-
cross-correlations could explain the anomalous broadeninged on a few bonds and this limitation is important for the
of the relaxation peaks reported for the segmental and theresent model where the bond length is fixed. In fact, devia-
normal-mode processes in some experiments on monodi§ons from the Rouse model were reported by experiments
perse polymeric mel8 (see in particular Table Il of Ref. carried out on different polymeric systems both at very high
93). In fact, the analysis of the dielectric relaxation shape byscattering vectors(short length scalgsand high chain
means of a distribution of relaxation times has shown thestiffness?®~%

overlap between the normal-mode and the segmental relax- Recently, Harnaet al!**~**developed the semiflexible

ation distributions for polymers with low molecular weigfit. chain modeSFCM), a modification of the Rouse model in
order to represent the local chain stiffness effects. According

H. Dielectric relaxation of type-A polymers: to the SFCM, the mode relaxation times are given by
Lineshapes

71
The previous section pointed out that for chains with TﬁFCM:

2 4
M =10 monomers the “normal-mode” and “segmental” pro- P+ apf(p)p
cesses give overlapping contributions to the total permittivitywhich differs from Eq.(47) for the p* term. f(p) is a nu-
e(w) thus limiting the accuracy of the decoupling approxi- merical factor increasing fromi(1)=0.25 to the unit value
mation, Eq.(42). The segmental process is almost indepenor largep. The a, parameter read%'

(51
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FIG. 15. (a) The master curve of the correlation functi@. for all the
temperatures on the isobBr=2.0 ( thin lines. The dotted line is a fit with
Eqg. (50), the thick solid line is the best-fit of the SFCM model with
=0.059+0.004, andr,;=1.15+0.04. The exponents of the power-laws give
the stretching parameters 6%, at intermediate and long times afig) the
master curve of the dielectric permittivig| derived from the correlation
functions of panela).

2

7TCM ’ (52)

2(M—1)

whereC,, is the characteristic ratio defined by E@). The

ap=

2 -
1 f—
-
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FIG. 16. (a) The master curve of the correlation functi@n (t) for all the
temperatures on the isobBr=2.0. The exponents of the power-laws give
the stretching parameters 6f and (b) the master curve of the dielectric
permittivity e derived from the correlation functions of pan@) (thin
lines), the thick and dotted lines are fits with a Cole—Davidson function
(Bcp=0.767) and by takingC, (t) to be a stretched exponential with
Brxww= 0.84, respectively.

16(b) plots the corresponding’ which is fitted fairly well by
the Fourier transformed stretched exponential Wik
=0.84 or with a Cole—Davidson function withBcp
=0.767, following the relationship found by Lindsey and

a, parameter is virtually temeperature-independent in thaPatterson for the shape parameters of the two functions.

a,=0.056 atT=0.7, P=2.0, and it changes ta,= 0.064 at

The comparison with the Rouse model is not pursued further

T=1.8P=2.0. We fitted the SFCM model to our master since the latter is not expected to describe with accuracy the

curves by adjusting; anda,,. The results are shown in Fig.
15(a) for C.{t) and in Fig. 1%b) for ¢”. SFCM improves
the fit with the best-fit valua,=0.05%+0.004 over all the
interval 10 2<t/7<10%.

The shape of the peak of the permittivityw) due to the

segmental relaxation is now considered. It is derived from

Eq. (37) by replacingC,; with the correlation function of the
perpendicular polarizatio®, (t) which is proportional to
C, (t) according to the relation

(PL(0)-PL(1))=(p, T)?Cy(1). (53
Figure 16a) presents the master curve Gf (t) at P=2.0.

fast decay ofC, (t). The comparison with the SFCM model
is more promising and is under current developn¥ént.

IV. CONCLUSIONS

Results of extensive MD simulations of a polymer melt
have been presented. The thermal and the density effects on
the statics and the dynamics have been investigated in wide
temperature and pressure ranges.

In the explored thermodynamic region, a global time-
temperature-pressure superposition principlePSP for
both the translation and the rotational dynamics holds and a

After the ballistic regime with Gaussian decay and a plateausingle scaling timer is found. 7 is very close to the correla-
like region the decay is described by a stretched-exponentigion time of the end—to—end vectag. and the diffusion time
with 8=0.84. The stretching is very close to that found for 74 . The scaling argument is more robust than the Rouse

Cedt) in the same time windowsee Fig. 188)]. Figure

model and relies on neglecting at long timéz¢*) the finer
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