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Results from a molecular dynamics simulation of a melt of unentangled polymers are presented. The
translational motion, the large-scale and the local reorientation processes of the chains, as well as
their relations with the so-called ‘‘normal’’ and ‘‘segmental’’ dielectric relaxation modes are
thoroughly investigated in wide temperature and pressure ranges. The thermodynamic states are
well fitted by the phenomenological Tait equation of state. A global time-temperature-pressure
superposition principle of both the translational and the rotational dynamics is evidenced. The
scaling is more robust than the usual Rouse model. The latter provides insight but accurate
comparison with the simulation calls for modifications to account for both the local chain stiffness
and the nonexponential relaxation. The study addresses the issue whether the temperature or the
density is a dominant control parameter of the dynamics or the two quantities give rise to
comparable effects. By examining the ratiouatu/aP between the isochronic and isobaric
expansivities, one finds that the temperature is dominant when the dynamics is fast. If the relaxation
slows down, the fluctuations of the free volume increase their role and become comparable to those
of the thermal energy. Detectable cross-correlation between the ‘‘normal-mode’’ and the
‘‘segmental’’ dielectric relaxations is found and contrasted with the usual assumption of independent
modes. ©2004 American Institute of Physics.@DOI: 10.1063/1.1630293#

I. INTRODUCTION

Although a number of different experimental techniques
~such as dielectric and mechanical spectroscopies, EPR and
NMR, light and neutron scattering, etc.! are available to
probe the relaxation properties of polymers and glass-
forming liquids over a broad range of time scales, a complete
understanding of the relaxation dynamics is still far to be
achieved.1–4 Nonetheless, the experiments unambiguously
evidence the huge increase of the structural relaxation time
with a super-Arrhenius temperature behavior near the glass
transition temperatureTg . In order to explain these results, a
variety of theoretical models have been proposed in the past.
Some of them aimed at establishing the relationship between
the dynamics and the thermodynamic properties near the
glass transition~time scale: 10252102 s);5,6 others found
that a well-defined crossover to the characteristic dynamics
leading the system to the structural arrest is located at tem-
peratures which are higher thanTg .7

The pioneering studies of Williams,8 Sasabe and Saito9

and Johari and Whalley10 have earlier pointed out that a
deeper insight into the dynamics of glass-forming liquids and
amorphous polymers is gained by the knowledge of the re-
laxation times as a function of both temperature and pres-
sure. In fact, the possibility to reach the glassy state by two
alternative paths, i.e., by cooling or compressing, enables a
more stringent test of several theories, which usually predict

a Vogel–Fulcher kind of behavior for the temperature depen-
dence of the relaxation time but different pressure dependen-
cies. In the last decade, this remark motivated several inves-
tigations of the dynamics of low-molecular-weight and
polymeric glass formers as a function of both the tempera-
ture and the pressure by using various experimental
techniques.11–14 Failures of some models in describing the
isothermal data under variable pressure15 as well as strik-
ingly good agreement with the predictions of other models
for both isothermal and isobaric data16–20were reported. The
above studies pointed out that the key feature of the models
is the different relevance which is given to the available free
volume and the activated jumps to account for the diffusion
in the supercooled state. In fact, as temperature is lowered,
the molecular motions become more restricted, due to both
the decrease of the thermal energy and the increased molecu-
lar packing.21,22 If the dynamics near the glass transition ap-
pears to be obviously affected by both thermal and density
effects, it is still a matter of wide debate which one~decreas-
ing volume, decreasing temperature, or both! plays the major
role on approaching the glass transition.21–23The solution of
this problem is of fundamental importance for the complete
understanding of the glass transition. Recently, from high-
pressure viscosity data for triphenyl-phosphite and glycerol,
Ferreret al.23 concluded that the temperature rather than the
density sets the super-Arrhenius behavior close toTg at at-
mospheric pressure and that the lack of free volume leads to
negligible effects, except maybe at very high pressures. On
the other hand, Ngaiet al.24 more recently found that thea!Electronic mail: dino.leporini@df.unipi.it
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thermal variations of unoccupied volume of various glass
formers, measured by positronium annihilation lifetime spec-
troscopy, reflect changes in the dielectrica-relaxation time
over a wide temperature range, implying that the free volume
cannot be neglected in analyzing the structural relaxation
properties. Moreover, the latest studies by Paluch and co-
workers assessed the volume dependence of the structural
relaxation time of glass-forming liquids near the glass tran-
sition by using combined temperature and pressure
variations.25–27 They evidenced that fluctuations in both the
thermal energy and the free volume contribute to the dynam-
ics of supercooled liquids. Volume considerably influences
the supercooled dynamics of low-molecular-mass van der
Waals liquids at ambient pressure,25 while it seems less im-
portant, or at least comparable, to temperature in driving the
dynamics at higher pressures or in polymeric systems.25,28

The role of the volume becomes negligible compared to the
thermally activated process in hydrogen-bonded systems.23

The above survey of the experimental results shows that
the microscopic dynamics close to the glass transition is in
principle affected by both the activated processes and the
available free volume. This feature suggests further theoret-
ical work to combine these mechanisms, e.g., by relating the
heights of the potential energy barriers and the local density.

Experiments on polymeric melts at high pressure have
been recently performed by means of dielectric,29,30 heat
capacity,31 and photon correlation spectroscopy.32 The acti-
vation volume was found to increase at higher pressure. The
studies evidenced that the relaxation process functions do not
change appreciably with the pressure and the temperature,
thus allowing the scaling of the data on proper master curves.
The scaling factors differ for the various process and the
dielectric segmental relaxation process shows a stronger
pressure dependence than the normal-mode process.

A thorough analysis of the relaxation behavior of an ato-
mistic model of the polymeric melts by changing both the
pressure and the temperature is a challenging task since the
intramolecular and intermolecular potentials lead to motions
occurring on a wide range of time scales. To alleviate the
problem and consider only the relevant degrees of freedom
of the polymeric chains a number of coarse-graining strate-
gies have been developed.33 The bead-spring model34–36 is a
well-known scheme to replace groups of atoms of the chain
by one super-atom, the bead~see Ref. 37 for a recent re-
view!. Intramolecular~‘‘bonded’’! beads are linked by quasi-
elastic forces. Intermolecular~‘‘nonbonded’’! beads interact
via analytical potentials, e.g., the Lennard–Jones potential.
Bennemannet al. carried out a recent molecular dynamics
~MD! study of polymer melts by the bead-spring model at
different pressures and temperatures and reported master
curves for the incoherent intermediate dynamic structure fac-
tor evaluated atq.2p/b, beingb the bond length, and the
average bond orientational correlation function with rankl
52.38 Kaznessiset al. used the bead-spring model to inves-
tigate the dielectric relaxation of concentrated polymer
solutions.39 They evidenced that the presence of dipoles did
not influence the static and dynamic properties of the chains
in any significant fashion. Therefore, the dielectric permittiv-
ity was derived by dropping the charges and by using only

equilibrium simulations, instead of resorting to more elabo-
rate approaches requiring the evaluation of the nonequilib-
rium response of charged polymer to the presence of external
time-dependent electric fields. The findings of Kaznessis
et al. parallel well-known experimental evidences that in
most polymers, e.g., polyisoprene, the dipole moment is
small and the intermolecular and intramolecular dipole–
dipole interactions are negligible.40

The system under investigation in the present article is a
melt of fully-flexible, freely-jointed polymer chains being
described by a bead-rod model~i.e., the springs of the
bonded beads are stiff!.36,37The study is carried out by equi-
librium MD simulations and is primarily focussed on the
large-scale and the local rotational dynamics with an empha-
sis on the dielectric properties. We follow the approach of
Kaznessiset al.39 and assume that ‘‘ghost’’~i.e., noninteract-
ing! electric dipoles are stuck into the chain with fixed ge-
ometries accounting for both the so-called normal~dipole
parallel to the chain! and the segmental~dipole perpendicular
to the chain! relaxation modes of type-A polymers according
to the definition of Stockmayer.41 To discriminate between
the role played by the temperature and the density to set the
relaxation rates, several isobaric and isothermal lines are ex-
plored.

The article is organized as follows. In Sec. II, the tech-
nical details of the simulation are given. In Sec. III, the re-
sults are discussed. They include both the static and the dy-
namic properties of the model system. The main conclusions
are summarized in Sec. IV.

II. DETAILS OF THE SIMULATION

We investigate a system ofN5200 fully flexible linear
chains withM510 monomers~beads! each. The sample is
confined into a cubic box with periodic boundary conditions.

The interaction between nonbonded monomers occurs
via the standard Lennard–Jones~LJ! potential

U~r !54e@~s/r !122~s/r !6#1Ucut. ~1!

The potential is cut off atr cut52.5s and properly shifted by
Ucut so as to vanish at that point and to make it continuous
everywhere.

To handle the boundary conditions, the minimum image
convention is adopted. Neighboring monomers in the same
chain are constrained to a distanceb50.97s by using the
RATTLEalgorithm.42 From now on LJ units are adopted with
the Boltzmann constantkB51.

The system is studied at several pressuresP and tem-
peraturesT; the values are listed in Table I. Each entry con-

TABLE I. Points in the (P,T) plane investigated by the present study.

Temperature

0.7 0.75 0.8 1.0 1.2 1.4 1.6 1.8

Pressure 0.1 • • • • •
0.93 • • • • •
2.0 • • • • • • • •
3.0 • • •
4.0 •
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sists of ten independent runs at least.
The samples are equilibrated under Nose´–Andersen43,44

dynamics at the prescribed temperature and pressure until the
average displacement of the chains’ centers of mass is as
large as twice the mean end–to–end distance. Data are col-
lected during production runs in microcanonical conditions,
by using a Verlet algorithm in velocity form. The time steps
adopted were in the range 1023<Dt<331023, increasing
with temperature, and the energy fluctuations in each run
were of orderDE/E;1024. No adjustment of the tempera-
ture, e.g., by rescaling the velocities, was needed during the
run.

III. RESULTS AND DISCUSSION

A. Static properties

In the thermodynamic region under study the densityr
changes by about 20% (0.8,r,1.05), but the different
packings affect the chain conformations in a limited way~see
Fig. 10!. Both the mean squared end–to–end distanceRee

2

;12.0 and the mean squared gyration radiusRG
2;2.0 vary

by less than 5%. The stiffness of the chain is quantified by
the characteristic ratioCM which is defined as

CM5Ree
2 /b2~M21!. ~2!

At T51.4, P50.93, andC1051.42. Under similar thermo-
dynamic conditions Bennemannet al. found C1051.52.45

The structural changes in the (P,T) region of interest are
investigated in more detail in Fig. 1, which plots the radial
distributions functions of the monomersgmon(r ) and of the
centers of massgcm(r ), as well as the chain structure factor
Schain(q), defined as

Schain~q!5
1

NM (
n51

N

(
m,m851

M K sin~qurm,n2rm8,nu!
qurm,n2rm8,nu L . ~3!

rm,n and the angular brackets denote the position of them-th
monomer in then-th chain and the ensemble average, re-
spectively. Panels~a! and ~b! in Fig. 1 show the limited in-
fluence ofP andT on Schain(q) and on the average monomer
radial distribution functiongmon(r ). gmon(r ) exhibits more
structure at lower temperature and higher pressure with small
shifts of the peaks~the delta-like contribution due to adjacent
monomers along the chains has been removed!. No relevant
changes are also seen in the radial distribution function of
the center of massgcm(r ), plotted in Fig. 1~c!, which evi-
dences the softness of the polymer coil with gyration radius
RG. The topic has been recently discussed by Guenza who
presented results forgcm(r ) of unentangled chains.46

To characterize the so-called ‘‘segmental’’ polymer dy-
namics it is useful to define a ‘‘transverse’’ vectorTn at-
tached to then-th molecule as follows:47

Tn5 (
m52

M21

tm,n ~4!

with

tm,n5~21!m~bm21,n2bm,n!, ~5!

wherebm,n is the unit vector along them-th bond of the the
n-th chain

bm,n5
1

b
~rm,n2rm11,n!. ~6!

The vectortm,n is locally orthogonal to the chain backbone

tm,n•~rm21,n2rm11,n!50 ~1,m,M !. ~7!

The mean squared magnitude of the vectorTn will be de-
noted byT'

2 .
Figure 2~a! shows the dependence ofRee

2 andT'
2 on the

densityr. A correlation is evident, as well as a definite trend

FIG. 1. ~a! Chain structure factor,~b! radial distribution functions of the
monomers, and~c! radial distribution functions of the centers of mass for all
the investigated temperatures and pressures. The inset comparesSchain(q) in
the regionq<2p/Ree with the low-q expansion for a discrete Gaussian
chain ~dashed line!.
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versus density: the denser the system, the smaller the value
of Ree

2 and the larger that ofT'
2 . Hence, there is a slight

shrinking of the chains due to the non-bonded interactions.45

By standard algebra one finds that

Ree
2 5~M21!b2@11~M22!cosũ # ~8!

.~M21!b212~M22!b2 cosû, ~9!

where

cosũ5
1

N~M21!~M22! (
n51

N

(
m8Þm51

M21

^bm,n•bm8,n&

~10!

cosû5
1

N~M22! (
n51

N

(
m52

M21

^bm21,n•bm,n&. ~11!

Eq. ~9! is derived by neglecting the correlations between
noncontiguous bonds. Under the same approximation one
finds

T'
2 .4M21028~M23!cosû. ~12!

By combining Eqs.~9! and~12!, a simple linear dependence
betweenT'

2 andRee
2 is found. Figure 2~b! compares this el-

ementary result with the numerical results. Better agreement
is provided by the freely rotating model where then-th bond

is connected to the (n11)-th bond with a fixed angle.35 The
model is worked out analytically and yields the following
relation betweenT'

2 andRee
2 :

T'
2 52S 2b2~M21!

Ree
2 1b2~M21! D

3F ~M22!1~M23!
b2~M21!

Ree
2 G . ~13!

The fit is slightly improved@Fig. 2~b!# but the agreement is
still limited by the roughness of the model.

A systematic study of the static intramolecular properties
of a bead-spring polymeric system with different excluded
monomeric volumes and bond lengths can be found in Refs.
48 and 49.

B. Scaling of the translational dynamics

The mean squared displacements of the terminal and
central monomers and of the centers of mass are defined as

g1~ t !5
1

2N (
n51

N

^uDrn,M /2~ t !u21uDrn,M /211~ t !u2&, ~14!

g3~ t !5
1

N (
n51

N

^uDrn
(cm)~ t !u2&, ~15!

g4~ t !5
1

2N (
n51

N

^uDrn,1~ t !u21uDrn,M~ t !u2&. ~16!

Representative plots ofg1 , g3 , andg4 are shown in Fig.
3~a!. Four distinct dynamical regimes are clearly seen. At
short times (t&0.1) the motion is ballistic:gi}t2. At inter-
mediate times (0.1&t&5) the monomers get trapped into
the cage of nearest neighbors, resulting in a plateau-like re-
gion of thegi ; up to this time the monomers’ behavior is
independent on the position along the chain. Trapping exhib-
its marked non-Gaussian features. This is evidenced by the
non-Gaussian parametera2 which is defined as

a2~ t !5
3

5

^uDr ~ t !u4&
^uDr ~ t !u2&2 21. ~17!

Figure 3~a! shows a typical plot ofa2 . It is seen that in the
cage regimea2 is large.

Cage restructuring occurs close to the timet* whena2

reaches its maximum. This is similar to what happens in
molecular liquids.50 However, att.t* molecular liquids un-
dergo free diffusion, but in polymers the connectivity drives
the motion of monomers to a subdiffusive regime, i.e.,gi

}txi with xi,1 depending on their positions along the chain:
x1.0.62, x4.0.69. For displacements larger thanRee

2 the
monomer motion becomes diffusive with diffusion coeffi-
cient D defined as

D5 lim
t→`

g3~ t !

6t
. ~18!

At intermediate, i.e.,t.t* , and long times the common
belief is that the finer details of the interactions between each
monomer and its surroundings may be neglected and the

FIG. 2. ~a! Density dependence ofRee
2 ~black symbols, left axis! and T'

2

~open symbols, right axis! for all the simulated (P,T) pairs and~b! best-fit
of T'

2 vs Ree
2 ~symbols! with the linear law derived by combining Eqs.~9!

and~12! with b51.01~dotted line!. The continuous line is a fit with Eq.~13!
with b50.94. The actual bond size isb50.97.
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motion is accounted for by average viscoelastic forces. This
is a delicate point. As an example, in Sec. III C, it will be
shown that the rotational correlation functions are stretched
and in Sec. III H, that stiffness effects must be included to
model also the relaxation of flexible chains. Both findings
warn that the monomer-background interaction has not-
trivial features which, expectedly, are poorly accounted for
by mean-field approaches. Nonetheless, detailed information
about short-range motions of the chain is customarily sacri-
ficed to gain a tractable model for the long-range motions.
The Rouse model for a melt of unentangled chains is a well-
known example.34,35The model gives an inherently poor ac-
count of the fast and very localized motions of the chain ends
whereas it predicts the subdiffusion of the inner monomers
with x150.5.35 The larger value ofx1 is attributed to the
shortness of the chain leading to an early crossover from the
subdiffusive to the free diffusion regime.45

The viscoelastic picture of the polymer motion exhibits
scaling properties. Figure 3~a! shows that the crossover be-
tween the subdiffusive and the diffusive regimes of the
monomers occurs when their mean squared displacement
equalsRee

2 . This happens at the so-called diffusion timetdiff

tdiff5
Ree

2

6D
. ~19!

Then, the two regimes must be collapsed on master curves,
whose shape depends on the particular monomer, if one de-
fines the reduced quantitiesgi /Ree

2 and t/tdiff . It is worth
noting that the scaling features are more general than the
Rouse model.

Indeed, Fig. 3~b! proves the above scaling procedure for
all the thermodynamic states under investigation and evi-
dences a time-temperature-pressure superposition principle
~TTPSP! when the mean squared displacementsg1 , g3 , and
g4 exceed the squared bead sizes2. Such displacements
occur when the cage relaxes. In this regime the connectivity
plays a role and the displacement of the central bond and the
one of the terminal bond are different, the latter being larger.
In particular, the scaling works nicely even for the terminal
monomers whose dynamics is not well described by the
Rouse model.

In Sec. III C, it will be shown that TTPSP holds for the
rotational dynamics as well.

C. Scaling of the rotational dynamics

The large-scale and the local reorientation are now char-
acterized. To this aim, the rotational correlation functions of
the end–to–end vector, the ‘‘transverse’’ vector, and the dif-
ferent bonds of the chain are defined as

Cee~ t !5
1

NRee
2 (

n51

N

^Rn~ t !•Rn~0!&, ~20!

C'~ t !5
1

NT'
2 (

n51

N

^Tn~ t !•Tn~0!&, ~21!

C(m,l )~ t !5
1

N (
n51

N

^Pl@bm,n~ t !•bm,n~0!#&, ~22!

wherePl(x) is the Legendre polynomial of orderl andRn is
the end–to–end vector of then-th molecule. The central and
the terminal bonds will receive special attention and their
correlation functions will be denoted, respectively, as

C(c,l )~ t ![C(5,l )~ t !, ~23!

C(t,l )~ t ![ 1
2 @C(1,l )~ t !1C(9,l )~ t !#. ~24!

The mean rotational correlation timest i are also of in-
terest. They are defined as the area belowCi(t)

t i5E
0

`

Ci~ t !dt. ~25!

In Fig. 4 representative plots of the above correlation
functions are shown. Each correlation function exhibits dif-
ferent decay regimes at different times. This is emphasized
by the insets of Fig. 4 which plot the data so as to convert
possible stretched exponentials with stretching parameterb
into straight lines with slopeb. The reorientation ofRee is
the slowest process. The decay ofCee(t) is fairly well fitted
across all the time window by a stretched exponential with
stretching parameterb50.84~not shown!. The other decays,

FIG. 3. ~a! Mean squared displacements~left axis! of the center of massg3

~solid line!, the central monomerg1 ~dotted line!, and the terminal monomer
g4 ~dot-dashed line!. The open circles represent the non-Gaussian parameter
a2 ~right axis!, the dotted line being a guide for the eye and~b! master
curves ofg1 , g3 , andg4 in units of Ree

2 for all the investigated thermody-
namic states. Refer to the curves of panel~a! to identify the corresponding
master curves. The time is rescaled by the diffusion timetdiff . The inset
shows how the scaled subdiffusive regime of the central monomer merges
with the scaled diffusive regime of the center of mass at long times.
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pertaining to local reorientation processes, are faster and not
fitted by stretched exponentials. ForC(c,l )(t), l 51,2 the de-
cay is accounted for by suitable normal-mode expansions
which will be discussed elsewhere.51 Figure 4 shows that, at
T50.7 andP52.0, C(c,1)(t) andC(t,1)(t) are virtually iden-
tical for t&10 but at longer times the former decays more
slowly. This is understood by referring to Fig. 3~a!. It is seen
that the corresponding mean square displacementsg1(t) and
g4(t) are coincident fort&t* '10 whereas the connectivity
slows down the displacements of the central bond at longer
times. Correlation functions withl 52 have faster decays and
are therefore less able to discriminate between the position of
the monomers. This explains why in Fig. 4C(c,l )(t) and
C(t,l )(t) with l 52 are closer to each other than the corre-
sponding curves withl 51. The insets of Fig. 4 evidence that

all the rotational correlation functions under study are af-
fected by the trapping occurring during the cage dynamics in
a small but appreciable way. The localization manifests itself
as a plateau-like region located in the same time region
where also the linear displacement exhibits a similar behav-
ior ~see Fig. 3!. It is interesting to compare the results on the
l -dependence of the rotational correlation functions of poly-
mers with the one which is evidenced by simulations of su-
percooled diatomic molecules52,53 and network-forming
liquids.54 It was found that the rotational correlation func-
tions in the ballistic regime exhibit a larger drop on increas-
ing l , reach a plateau-like region in the cage regime and
vanish for times longer than the structural relaxation
times.52–54As a consequence, the mean rotational correlation
times become shorter on increasingl .52–54Similar effects on
the correlation functions and the related correlation times of
the central and terminal bonds are seen in Figs. 4 and 8,
respectively. The plateau value in the polymer melt is higher
than in diatomic molecules even if the temperature is
higher52,53 and comparable to the one observed in network-
forming liquids.54 The studies also pointed out that the rota-
tional correlations of diatomic molecules die att;2t* for
l<4 at the lowest temperaturesT;0.5.50,52 In the present
case, due to the connectivity of the polymer chain, they ex-
tend for times being at least about 40 times longer thant*
even for the terminal bonds atT50.7 @see Figs. 3~a! and 4#.

The scaling properties of the displacement which were
discussed in Sec. III B suggest that the reorientation process
may exhibit the same feature too. To this aim the reduced
time t/ t̄ is defined,t̄ being the time whereCee( t̄)51/e.
Over all the thermodynamic region under investigation it is
found that the ratiotdiff / t̄53.4060.18 ~see below, Fig. 8!.
The Rouse model predictstdiff / t̄5p4/24.4.06.34,35

First, we test the scaling for one selected isobar and one
selected isotherm. Figures 5 and 6 show the resulting master
curves proving that the scaling works at long times, i.e.,t
.t* , for all the rotational correlation functions. The scaling
is lost at short times. This was already found by simulations
of supercooled diatomic molecules52,53 and network-forming
liquids.54 Figure 7 plots the master curves of all the rota-
tional correlation functions of the polymer melt for the ther-
modynamic states listed in Table I. We also plot the rota-
tional correlation functionCtot which is of interest for the
dielectric spectroscopy and will be defined and discussed in
Sec. III G. Together with the findings of Sec. III B~see Fig.
3!, Fig. 7 proves that TTPSP works in the thermodynamic
region under study and that the master curves result by scal-
ing in terms of the single time scalet̄ ~or equivalentlytdiff).

Additional evidence about the TTPSP is collected by
comparingt̄ with the mean rotational correlation timest i .
Notice thattee. t̄. It is also of interest to evaluate by Eq.
~25! the mean bond rotational correlation timetavg from the
mean bond correlation function

Cavg~ t !5
1

M21 (
m51

M21

C(m,1)~ t !. ~26!

Figure 8 shows the dependence of the the ratiost i / t̄ on
the density for all the (P,T) states investigated. It is seen
that the ratios are constant and depend on the specific rota-

FIG. 4. ~a! and ~b! the rotational correlation functions forl 51 and ~c! l
52 for T50.7, 1.8, andP52.0. The insets emphasize the different decay
regimes of each correlation function. See text for details.
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tional correlation function. This finding is readily explained
in that t i is mostly affected by the long-time decay ofCi(t)
which scales.

Some comments on the ratios between the rotational cor-
relation times presented in Fig. 8 are in order.

The ratiotee/ t̄ is slightly larger than 1; this is due to the
stretching of the correlation functionCee(t) (b50.84). The
ratio tdiff / t̄ has been discussed above. The ratiot (t,1) /t (c,1)

,1 is mainly due to the lower connectivity of the chain ends
which have larger free volume accessible to them, with re-
spect to that available for the other monomers, e.g., the cen-
tral monomer.47,55 tavg is comparable tot (c,1) ; this is due to
the similar behavior of the inner bonds, which hides the ef-
fect of the ones located on the chain ends.

The ratio of the correlation times with differentl ranks is

also worth noting. For a melt of Lennard–Jones dimers at
high temperature,t1 /t l was found to be nearly equal tol ( l
11)/2 in agreement with the diffusion model.52 In deeply
supercooled states one hast1 /t l;1, due to the presence of
jump-like motion. For the present polymeric system, the end
and the central bonds havet (t,1) /t (t,2);5.7 andt (c,1) /t (c,2)

;9.3, respectively. The fact that both ratios exceed the pre-
diction of the diffusion model is to be ascribed to the higher
connectivity of the bonds in the chain with respect to the
bond of the dimer. The same effect with larger magnitude
was seen in MD simulations of the local chain motion in
amorphous polyethylene and a freely rotating chain model.56

It was found that the rotational correlation times of a bond
vector c defined along the chain axis have the ratio
t (c,l 51) /t (c,l 52);102. The study also addressed the reorien-

FIG. 5. Master curves of all the rotational correlation functions for the
isobarP52.0 and the temperaturesT50.7, 1.2, and 1.8. The insets empha-
size the different decay regimes of each correlation function.

FIG. 6. Master curves of all the rotational correlation functions for the
isotherm atT51.0 and the pressuresP50.1, 2.0, and 4.0. The insets em-
phasize the different decay regimes of each correlation function.
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tation of a ‘‘bisector’’ a and an ‘‘out-of-plane’’b vector.
These ‘‘perpendicular’’ vectors with respect to the chain axis
exhibited faster dynamics than the bond vectorc, t (a,l 51)

;t (b,l 51);(32531023)t (c,l 51) . In our case we find
t' /t (c,1)57.631022. Hence, the relaxation of the vectors
parallel to the chain axis is slower than the vectors perpen-
dicular to it. The chain is rapidly tumbling around the chain
axis or a segment of it, while this latter is slowly changing its
direction following the relaxation of the local~surrounding!
structure.

The anisotropy of the relaxations of the vector parallel to
the chain axis and of the vectors perpendicular to it also
depends on the chain properties. In our model the polymer is
completely flexible because of the absence of torsional po-
tentials and constant bond angles. This reduces the anisot-

ropy and accounts for the lower ratiost (m,1) /t (m,2) for m
5c,t, andt (c,1) /t' with respect to Ref. 56. The influence of
the polymer structure on the anisotropy was seen in fully
atomistic simulations and experiments on polyisoprene
melts,57,58 which evidenced a less pronounced anisotropy of
the local motion and lower values of the ratiot (c,1) /t (c,2)

than Ref. 56. In particular,t (c,1) /t (c,2)'6.1 in Ref. 57, which
is quite close to our result.

The results of this section extend the findings of Sec.
III B and complete the evidence of the TTPSP scaling of both
the translational and the rotational dynamics in the thermo-
dynamic region under study. The scaling procedure applies
to orientational correlation functions involving quite differ-
ent observables~end–to–end vector, terminal and central
bond, transverse vector! and different ranks of the Legendre
polynomials. In Sec. III G it will be shown that it also holds
true for the correlation functionCtot(t) of interest for the
dielectric relaxation which has rankl 51 and is affected by
both the local and large-scale motion in a correlated way.

Numerical evidence of the TTPSP scaling in polymer
melts was reported in Ref. 38 for chains withM510 mono-
mers, mutual Lennard–Jones interactions, and good stiffness
of the bonds. It was shown that the incoherent intermediate
dynamic structure factor evaluated atq.2p/b, the average
bond orientational correlation function, and the end–to–end
correlation function~both with rankl 52) may be collapsed
on single curves at long times. Moreover, the temperature
dependence oftee and the correlation timetq of the the
incoherent intermediate dynamic structure factor for different
q-values was plotted for different isobars. The plotted ranges
were 0.45<T<1.0 for P50.5, 0.46<T<2.0 for P51, and
0.52<T<2.0 for P52. For each isobar the temperature de-
pendence of the different correlation times was found to be
rather similar even if deviations are apparent at higher tem-
peratures forq-values larger than the maximum of the static
structure factor.

Scaling is predicted by the Mode-Coupling theory7 as
well as by the Rouse model.34,35 The Mode-Coupling theory

FIG. 7. Master curves of all the rotational correlation functions. The plot
collects all the cases in the (P,T) region under study~see Table I!. Ctot(t) is
the correlation function of the overall polarization, Eq.~38!.

FIG. 8. Dependence of the ratiost i / t̄ on the density for all the simulated
(P,T) states. The dotted lines are the best-fit valuestdiff / t̄53.4060.18,
tee/ t̄51.0460.03, t (c,1) / t̄5(3.760.4)31021, tavg/ t̄5(2.760.1)
31021, t tot /t̄5(2.660.3)31021, t (t,1) / t̄5(1.2560.8)31021, t (c,2) / t̄
5(4.060.4)31022, t' / t̄5(2.8360.16)31022, and t (t,2) / t̄5(2.20
60.15)31022.
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provided a recent microscopic justification of the Rouse
model in polymer melts.59 However, the physical basis of the
scaling is rather simple in that at long timestdiff5Ree

2 /6D is
the only natural time scale for a melt of unentangled chains
with sizeRee drifting with diffusion coefficientD. The scal-
ing hypothesis holds across the regiont.t* where the sur-
roundings of the chain may be modeled in terms of effective,
average viscoelastic forces.

The existence of a unique scaling factor well aboveTg

was confirmed by studies on the dynamics of polyisoprene
melts performed by different experimental techniques~di-
electric, time resolved and photon correlation spectroscopy,
and depolarized Rayleigh and neutron scattering!:60–64 The
characteristic relaxation times followed, apart from a con-
stant factor, the same behavior with temperature. In particu-
lar, the dielectric relaxation times~rank l 51) related to the
dipole perpendicular to the chain contour and the photocor-
relation characteristic times~rank l 52) had a similar time
scale.64 On the other hand, recent experiments by dielectric
relaxation on oligomeric and polymeric melts carried out
over a wide pressure and temperature range29–31,65 have
shown that the universal scaling behavior is valid for tem-
peratures well aboveTg and breaks down in an intermediate
regime still above the glass transition. MD simulations of a
melt of dimers (M52) also showed thatt i ~for l 5124)
and the rotational diffusion coefficientDr

21 exhibit at inter-
mediate temperature the same scaling law, which is lost at
the lowest and the highest temperatures.52,53

The scaling properties depend on the length scale under
investigation so the complete understanding of the above ex-
perimental and numerical results needs the clear assessment
of the scales which are probed. As an example, neutron scat-
tering evidenced that the dynamic structure factorS(q,t) in
polybutadiene evaluated atq-values around the maximum of
the static structure factorqmax ~corresponding to the inter-
chain distance! scales with the macroscopic viscosity.66

However, at higherq-values, e.g., the first valley of the static
structure factor, a decoupling is observed at lower
temperatures.67 The q-dependence of the time-temperature
superposition principle in thea-relaxation regime of a simu-
lated polymer melt of unentangled chains has been also
discussed.68 It was found that the scaling of the coherent
intermediate scattering function fails at high temperatures
and highq-values (q;2qmax). Violations were also noticed
in the early part of the decay on approaching the so-called
critical temperatureTc from above.

D. Density and temperature dependence
of the scaling time t̄

The previous discussion proved thatt̄ is the relevant
time scale of the present polymer model. This section pre-
sents the temperature and pressure behavior of this quantity.

The pressure dependence oft̄ is shown in Fig. 9~a! for
different isotherms. The curves are fitted by

t̄5 t̄ (P50) expS PDV

T D , ~27!

whereDV is the activation volume per monomeric unit.

The continuous lines in Fig. 9~a! are the best-fit curves.
The inset of Fig. 9~a! shows thatDV is constant at high
temperature (DVHT.0.3460.01) and that it increases on de-
creasing the temperature. This behavior has been reported by
several experimental30–32,69–71 and numerical studies72 on
linear polymeric melts. At lowT the increase ofDV is be-
lieved to be reminiscent of the postulatedT dependence of
the cooperative volume.30 At higher temperatures, i.e., above
the critical limit for the size of cooperatively rearranging
regionsDV denotes a volume barrier. Previous experiments
reportedDV to be comparable to,6 the monomer size few
degrees aboveTg , and to attain a limit of 30%–40% of the
monomer size at higher temperatures.30,31This compares in a
satisfactory way with the present work.

The temperature dependence oft̄ is shown in Fig. 9~b!
for different isobars. The Arrhenius law

t̄5 t̄0 expS Eact~P!

T D ~28!

does not fit the different isobars over the whole range, even if
the agreement improves at higher temperatures and/or short
times. A similar conclusion is drawn if one uses the Vogel–
Fulcher–Tammann~VFT! equation6,73

FIG. 9. The scaling timet̄ versus~a! the pressure and~b! the temperature.
The continuous lines in panel~a! are fits of the isothermsT50.7, 0.8, 1.0,
1.2, 1.4, and 1.8 with Eq.~27!. The inset plots the activation volumeDV vs
the temperature. Panel~b! plots the isobarsP50.1, 0.93, 2.0, and 3.0. The
continuous lines are Arrhenius fits, Eq.~28!. The dashed lines are VFT fits,
Eq. ~29!. The insets show the activation energyEact of Eq. ~28! and the VFT
temperatureT0 of Eq. ~29!.
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t̄5 t̄0VFT expS DT0~P!

T2T0~P! D ~29!

The discrepancy is expected in that it is experimentally
well known that a crossover from an Arrhenius to super-
Arrhenius behavior occurs several degrees aboveTg .74 This
motivated us to split the whole temperature range into two
intervals in order to properly account for the different depen-
dencies. According to our data, the Arrhenius regime extends
over 1<T<1.8 (t̄<350) whereas the VFT regime is found
at 0.7<T<1 (t̄>350). It must be pointed out that, even if
alternative functions can be employed, the VFT equation is
rather adequate to fit the super-Arrhenius behavior.72,75

In the Arrhenius regime the attempt time was set tot̄0

55.64 for all the isobars and only the activation energyEact

was adjusted. The best fits are plotted in Fig. 9~b!. The inset
of Fig. 9~b! shows that the best-fit values ofEact depend
linearly on the pressureP according toEact5E01vP with
v50.3660.02 andE053.2060.02, i.e., the energy barrier
increases with density. The quantityv must be coincident
with the high-temperature~HT! activation volume in that
DVHT5T(] ln t̄/]P)5v. In fact, the fit on the isobaric lines
yields DVHT.0.3460.01 @see the inset of Fig. 9~a!#. The
agreement is a good cross-check of the two independent fit
procedures.

In the VFT regime the best-fit procedure kept fixed
t̄0VFT510.5 andD511 and adjusted onlyT0(P) for the dif-
ferent isobars. The assumption of keeping fixedt̄0VFT andD
can be justified by the experimental evidence that, at least for
moderate compression, the main influence of pressure on the
VFT parameters concernsT0 , whereast̄0VFT andD are vir-
tually unchanged.11,76–80 The best-fit results are plotted in
Fig. 9~b!.

The inset of Fig. 9~b! shows the linear behavior of
T0(P) versusP. The linear regressionT0(P)5T0(0)1wP
yields T0(0)50.17060.01 andw5(3.760.2)31022. This
linear dependence has been already reported in literature for
polymeric melts,30,69,79,81,82and it is consistent, at least for
moderate pressures, with both the free volume model and the
Adam Gibbs model extended to deal with the density and
thermal effects on the polymer dynamics.14,16,17,78,83A simi-
lar pressure dependence of the VFT parameters was reported
in a MD simulation of polyethylene with conformational
details.72 In another MD simulation on oligomers~bead-
spring model with poly-dimethylsiloxane~FENE! potential
and different cut-off of the LJ potential,M510) a value of
T0(P51)50.34 was found75 which is slightly higher than
the valueT0(P51)50.21 of the present study.

E. State equation

The dependence of the specific volume onT and P is
plotted in Fig. 10. It is well fitted by the Tait equation, com-
monly used as a phenomenological equation of state of poly-
meric melts:84,85

V~P,T!5V~0,T!S 12C ln
P

B~T! D ,

V~0,T!5A01A1T1A2T2, ~30!

B~T!5B0 exp@2B1T#,

for real polymersC50.0894.84

A comparison of the best-fit parameters of the present
system with the ones of real polymers would be interesting.
The Tait equation constrains the thermodynamic variablesP
andT if V(0,T) andB(T) are known.B(T) is proportional
to the isothemal bulk modulusK(T) at P50.

B~T!5CK~T!, ~31!

with K2152V21(]V/]P)uP50 . In our model, 0.5,B(T)
,2.5 in LJ units. For real polymers far from the glassy state
B(T);300 MPa. Then, the lowest pressure under study, i.e.,
P50.1, corresponds to pressures in the range 12–60 MPa,
not far from the atmospheric pressure conditionP/B(T)
,1. The highest valueP54.0 is in the range of higher pres-
sures experimentally investigated, 0.48–2.4 GPa. The con-
version ofV(0,T) from LJ units to the real world ones would
be largely arbitrary due to the highly coarse-grained picture
of the polymer chain under study and will be not pursued.
The lack of information prevents one to relate the tempera-
ture dependencies ofB(T) andV(0,T). However, they may
be compared by using the ratio between the fractional
changes ofB(T) and V(0,T) with the temperature,r T ,
which may be expressed as

r T5B1 /aP0 , ~32!

whereaP0 is the volume expansion coefficient atP50

aP05
1

V S ]V

]TD U
P50

5
A112A2T

A01A1T1A2T2 . ~33!

Comparingr T as obtained from the simulation with the
ones of real polymers provides a good test of the meaning-
fulness of using the Tait equation as fit function.

Table II lists the ratior T for the present model and for
some selected polymers. The comparison is quite reassuring
about the consistency between the thermodynamic states of

FIG. 10. Volume per monomer versus pressure~lower axis, open symbols!
and temperature~upper axis, black symbols!. The continuous and the dashed
lines are the best-fit with the Tait Eq.~30!. The parameters areA050.876
60.004, A150.16160.007, A25(6.160.4)31022, B057.960.1, andB1

51.5560.04.
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the present coarse-grained model and those of real systems.
The small discrepancies which are seen for~PDMS! deserve
further work.

F. Density and thermal effects on the dynamics

The knowledge of the equation of state allows one to
analyze the density dependence of the dynamics in greater
detail. Figure 11 plots log10 t̄ versus the density for all the
isobars and isotherms under investigation. Similar plots are
well known from the experiments.23,30,86For a given density
increase, the more efficient way to slow down the system is
by isobaric cooling rather than by isothermal compression. In
fact, by isobarically cooling a molecular liquid, both the ther-
mal energy and the free volume available to the molecules
are decreased, whereas by isothermally compressing it only
the free volume changes. The finding that the density depen-
dence of log10 t̄ for different isobars and isotherms does not
collapse on a master curve proves that the density by itself is

not the unique variable governing the dynamics. This rules
out any relation between the relaxation time and the density
alone, e.g., the Doolittle-like equation

t̄5t0 expS B

r02r D , ~34!

whereB andr0 are constant. Eq.~34! does not work also if
one chooses two different sets of parametersB, r0 , andt0 ,
one for all the isothermal paths and one for all the isobaric
paths. The issue of the density scaling will be discussed more
in detail in a forthcoming paper.87

Figure 11 prompts the question if the temperature or the
density is a dominant control parameter of the dynamics or
the two quantities give rise to comparable effects. The pa-
rameter of choice23,25to quantify the relative contributions of
the temperature and the density to the dynamics along iso-
bars is the ratio of the isobaricaP and the isochronicat

expansivities to be defined as

aP5
1

V S ]V

]TD
P

, ~35!

at5
1

V S ]V

]TD
t

. ~36!

If the dynamics is dominated by temperature activated pro-
cessesuatu/aP is much larger than one, the opposite holds if
the volume rules the dynamics. A ratio of order unity means
that the two quantities are equally important. The inset of
Fig. 11 plots the pressure dependence ofuatu/aP for differ-
ent t̄. The ratio increases with the pressure at a givent̄. It
decreases with increasingt̄ at a given pressure and reaches a
limiting value at larget̄. Such a behavior suggests that when
the dynamics is fast~shortt̄) the temperature is the dominant
variable. On the other hand, if the dynamics is slowed down
~long t̄) the available free volume becomes more important.
It must be stressed that the counter-intuitive finding that the
dynamics is more activated at higher pressures is supported
also by experimental results,25 and explained by the in-
creased height of the potential energy barriers thus leading to
a more activated behavior.

The ratiosuatu/aP by the present study compare well
with the experimental results:uatu/aP estimated for longt̄ is
between 0.5 and 1 for low molecular van der Waals liquids,
between 1 and 2.8 for polymeric systems, and finally much
higher than 1 in the very special case of hydrogen-bonded
systems, following a pattern of decreasing importance of vol-
ume with respect to that of temperature activated
dynamics.23,25,28,70,88,89

Our polymer model appears to be at the border line be-
tween polymers and van der Waals liquids, with a dynamics
to which the fluctuations of the the thermal energy and the
density contribute to the same extent.

G. Dielectric relaxation of type-A polymers:
mode correlations

The dielectric spectroscopy probes the dynamics of
polymeric systems by measuring the complex permittivity

TABLE II. The dimensionless ratior T5B1 /aP0 for the present model and
for the polymers: polybutadiene~PB!, cis-abundance poly-isoprene~PI1!,
~3,4! abundance polyisoprene~PI2!, poly-dimethylsiloxane~PDMS!, and
atactic poly-styrene~aPS!.

Polymer Ref. M r T

Present work - 10 5.55–6.41
Trans-PB 106 ;2000 5.65–5.95
cis-PB 106 ;2000 5.40–5.62
1,2-PB 106 ;2000 6.38–6.57
PI1 106 ;1500 5.96–6.31
PI2 106 ;1500 6.03–6.29
PDMS 107 ;13 7.37–7.64
PDMS 107 ;50 6.87–6.97
PDMS 107 ;80 6.75–7.05
aPS 108 - 5.75–5.85

FIG. 11. Behavior of the timescalet̄ vs the density along isothermal and
isobaric paths. The symbols are results from the simulation, the dashed lines
are the isothermal fit curves displayed in Fig. 9~a! and the continuous lines
are the isobaric fit curves displayed in Fig. 9~b!. The inset shows the pres-
sure dependence of the ratio between the isobaric and isochronic expansivi-
ties. The lines correspond tot̄547 ~circles!, 64 ~squares!, 148 ~diamonds!,
352 ~up triangles!, and 524~down triangles!.
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«~v!, which is related to the correlation functionCtot(t) of the
total polarizationPtot(t) by the following relations:

«~v!2«`

D«
52FF ]

]t
CtotG~v!512 ivF@Ctot#~v!, ~37!

where«` is the permittivity due to the electronic polarization
~i.e., not orientational!, D« is the overall orientational dielec-
tric strength,F denotes the Fourier transform, and

Ctot~ t !5
^Ptot~ t !•Ptot~0!&

^Ptot~0!•Ptot~0!&
. ~38!

We are interested in type-A polymers~according to the
definition of Stockmayer41!, i.e., linear polymers possessing
a nonzero dipole component which is parallel to the chain
backbone. In such polymers the dielectric experiments re-
vealed the existence of various types of relaxation
processes:90 a ‘‘normal-mode’’ (a8-) relaxation related to the
overall dipolePi(t) parallel to the chain backbone, probing
the reorientation of the end–to–end vector, and the so-called
‘‘segmental’’ ~a-! relaxation, related to the overall perpen-
dicular dipoleP'(t), probing shorter length and time scales.
The total polarization of a type-A polymer is written as

Ptot~ t !5Pi~ t !1P'~ t !

5 (
n51

N S m i (
m51

M21

bm,n1m' (
m52

M21

tm,nD . ~39!

The average value of the static polarization for the two
components is

^Pi~0!•Pi~0!&5~m i!
2Ree

2 /b2,
~40!

^P'~0!•P'~0!&5~m'!2T'
2 .

Equation~39! neglects the possible collective character
of the dielectric relaxation. This follows from well-known
experimental evidences that in most polymers, e.g., polyiso-
prene, the dipole moment is small and the intermolecular and
intramolecular dipole–dipole interactions are negligible.40

In the present model the parallel and the transverse com-
ponents of the permanent dipole associated to each mono-
meric unit were set tom i51 andm'51.5, respectively. The
ratio corresponds tocis polyisoprene.40 The average modulus
of the transverse dipole attached to each monomer is

^(p')2&52(m')2(11cosû) @see Eq. ~11!# with cosû
50.173 atT51.0, P52.0, and a small dependence on the
thermodynamic state. If the transverse dipole moment is well
defined, one expectŝPi(0)•P'(0)&50. For all the investi-
gated thermodynamic states it is found

^Pi~0!•P'~0!&

A^P'
2 &^Pi

2&
50.01660.48. ~41!

We are now in a position to deriveCtot(t) from Eqs.~38!
and ~39!. Ctot(t) exhibits the same scaling features of the
other correlation functions~see Fig. 7!. Having definedt tot

by Eq.~25! one findst tot /tee.t tot /t̄5(2.660.3)31021 ~Fig.
8!. The ratio reflects the non-negligible weight of the fast

motion of P'(t). It is worth noting thatt tot is comparable
with the mean bond rotational correlation timetavg ~see Fig.
8!.

In most experimental60,90–92and numerical studies,47 the
correlation between the parallel and the perpendicular polar-
ization is neglected, i.e.,

^Pi~ t !•P'~0!&5^Pi~0!•P'~ t !&50. ~42!

The assumption is motivated by the different time scales of
Pi(t) and P'(t). The normal-mode relaxation time, related
to the end–to–end relaxation timetee, increases with the
monomer numberM , tee}M2 for oligomers, andtee}M3.4

for entangled systems.30,60,93On the contrary, the segmental
relaxation time, related tot' , depends much less onM , and
is almost constant for entangled systems.

If the decoupling betweenPi(t) and P'(t) is safe for
high polymers, it becomes questionable for oligomers since
the related time scalestee and t' are closer. In the present
systemt' /tee.t' / t̄50.028360.0016, close to the ratio
t' /tee;0.05 found in poly-propylene-glycol! with M514
at high T,94 and the ratiot' /tee50.0360.01 for poly-cis-
1,4-isoprene withM;627 by extrapolating data from
higher molecular weight.60,90 Neglecting the cross terms be-
tween the parallel and perpendicular components leads to the
approximated total polarization correlation function given by
the sum of two independent correlation functions, related to
the parallel and the perpendicular polarizations

Ctot~ t !.Ctot* ~ t !5aiCee~ t !1a'C'~ t !, ~43!

whereai anda' are the relative dielectric strengths

ai5
D« i

D« i1D«'

5
~m i!

2Ree
2

~m i!
2Ree

2 1~m'!2T'
2 b2 , ~44!

a'5
D«'

D« i1D«'

5
~m'!2T'

2 b2

~m i!
2Ree

2 1~m'!2T'
2 b2 . ~45!

Equation ~43! expresses the dielectric relaxation as a
weighted sum of two independent terms pertaining to well-
defined dynamical processes, the reorientation of the end–
to–end, and the ‘‘segmental’’ vectors. The strength ratio is

ai

a'

5
~m i!

2Ree
2

~m'!2T'
2 b2 . ~46!

According to Fig. 2~a! the ratio between the normal and
the segmental strengths decreases by increasing the density.
Similar effects are reported by experiments90,95 and
simulations.96

To assess the approximation given by Eq.~43!, Ctot(t)
andCtot* (t) are compared in Fig. 12 forT50.7 andP52.0.
The situation is analogous for the other (P,T) points. The
agreement betweenCtot(t) andCtot* (t) is fairly good at short
and long times, but decreases at intermediate times, evidenc-
ing some degree of cross-correlation between the normal and
the segmental motion. The discrepancy raises at the time
scalet* of the cage restructuring, reaches its maximum att
;t3.tee/9, then it vanishes att@tee. t3 is the decay time
of the third Rouse mode of the chain, to be defined in a more
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precise way below. The scenario represented in Fig. 12 holds
also at different temperatures and pressures. As an example,
the isobarP52.0 is shown in Fig. 13.

These findings are readily intepreted. Att,t* the mo-
tion occurs inside the cage, no correlations exist between the
frozen overall chain conformation and the fast dynamics of
the monomers, which is largely independent on their position
along the chain~see Fig. 4!. At t.t* the cage structure re-
laxes and the motion becomes collective, i.e., the correla-
tions between the monomers are not negligible. The bond
dynamics is dependent on the position along the chain~see
Fig. 4!. In this regime appreciable correlations between the
parallel and the normal components of the polarization are
expected. The build-up of the correlations att.t* occurs in
the presence of an antagonistic phenomenon, namely, the fi-
nite correlation times of the collective motions due to the
ongoing deformation of the chain. The longest correlation
times set the lifetime of the cross correlations between the
different components of the polarization. The collective mo-
tions of the polymer chain are usually described in terms of
M modesXp(t) with p50,...M21 which are expressed as
linear combination of the positions of theM monomers.34,35

The p-th mode involves roughly the collective motion of
M /(p11) monomers during the deformation of the chain.
According to the Rouse model, thep-th modeXp(t) has
exponential correlation function with decay timetp given
by34,35

tp5
t1

p2 . ~47!

The first mode has the longest correlation timet1.tee

. t̄. For t.t* the cage restructuring allows the onset of
correlations between the end–to–end vectorRee and the
transverse oneT. As time goes by, the increase of the corre-
lation is slowed down by the decreasing number of corre-
lated collective modes, and is finally inhibited when only a
few of them survive. According to Fig. 12, the largest corre-
lations are found for times comparable tot3 . For longer

times only two modes,X1(t) and X2(t), still survive. But
X2(t) does not contribute toRee, and thus to Pi(t),
because34,35

Pi~ t !524
m i

b (
p:odd

Xp~ t !. ~48!

The above results suggest that the usual assumption of ne-
glecting the cross-correlation terms in the dipolar correlation
function Ctot(t) may be questioned at least for oligomeric
systems, where the correlations between parallel and perpen-
dicular motions are more important. Our results point out
that the correlations are detectable even iftee/t'.35. Thus,
the analysis of the correlation functionCtot(t), or of the per-
mittivity «~v!, could be misleading if a simple superposition
of ‘‘normal-mode’’ and ‘‘segmental’’ processes is imposed.
As an example, Fig. 14~a! shows the real («8) and the imagi-
nary («9) parts of the permittivity, as calculated by Eq.~37!
via the Fourier transform of the data in Fig. 13~a!. The char-
acteristic two-peak structure for«9(n) appears: the peak at
lower frequencies is related to ‘‘normal-mode’’ process
@Cee(t)# and the one at higher frequencies to the ‘‘segmen-
tal’’ one @C'(t)#. As it can be noted, the exact permittivity,
i.e. the one evaluated byCtot(t), is characterized by broader

FIG. 13. ~a! Representative plots of the correlation functionsCtot(t) ~solid
lines! andCtot* (t) ~dotted lines! for the temperaturesT50.7, 1.2, and 1.8 and
P52.0; the arrows mark the timet* where the nongaussian parametera2

reaches its maximum value for each temperature.~b! Comparison between
the scaled functionsCtot(t/t̄)2Ctot* (t/t̄) for all the temperatures on the isobar
P52.0.

FIG. 12. Comparison betweenCtot , Ctot* , Cee, C' ~left axis!, and Ctot

2Ctot* ~right axis! for T50.7 andP52.0.

449J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Thermal and density effects on motion of polymer melts

Downloaded 09 Jan 2004 to 131.114.128.200. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



peaks compared to the approximation derived byCtot* (t).
Moreover, the exact permittivity of the normal mode is
higher than the approximated one whereas the opposite oc-
curs for the segmental mode. Such discrepancies are empha-
sized by plotting the imaginary versus the real part of the
permittivity ~the so-called Cole–Cole plot!: each relaxation
process is related to a semicircle, the low-frequency region,
where the ‘‘normal-mode’’ is located, corresponds to high«8
values @see Fig. 14~b!#.93 The presence of non-negligible
cross-correlations could explain the anomalous broadening
of the relaxation peaks reported for the segmental and the
normal-mode processes in some experiments on monodis-
perse polymeric melts93 ~see in particular Table II of Ref.
93!. In fact, the analysis of the dielectric relaxation shape by
means of a distribution of relaxation times has shown the
overlap between the normal-mode and the segmental relax-
ation distributions for polymers with low molecular weight.93

H. Dielectric relaxation of type-A polymers:
Lineshapes

The previous section pointed out that for chains with
M510 monomers the ‘‘normal-mode’’ and ‘‘segmental’’ pro-
cesses give overlapping contributions to the total permittivity
«~v! thus limiting the accuracy of the decoupling approxi-
mation, Eq.~42!. The segmental process is almost indepen-

dent of the molecular weightM , whereas the normal-mode
component depends at least in a quadratic way. Then, on
increasingM the two components yield two separate peaks
of the permittivity «~v!. The overlap of the peaks is made
negligible when the chains are still poorly entangled, i.e., for
M&40.36 In this short-chain regime changing the chain
length simply shifts the normal-mode peak and leaves the
segmental mode virtually unaffected, so that the master
curves of each peak atM510 provide information on their
shape also forM&40.

First, the normal-mode peak is considered. It is derived
from Eq. ~37! by replacingCtot with the correlation function
of the parallel polarizationPi(t) which is proportional to
Cee(t) according to the relation

^Pi~0!•Pi~ t !&5S m iRee

b D 2

Cee~ t !. ~49!

In the framework of the Rouse theory the correlation func-
tion of the end–to–end vector is expressed as35

Cee~ t !5 (
p:odd

M21
8

pp2 exp~2t/tp!. ~50!

According to Eq.~50! the decay is exponential at long times
with the decay time of the first modet1 and is stretched at
shorter times due to the presence of additional modes. A
typical comparison between the Rouse model and our results
is provided by Fig. 15~a! which compares the master curve
of Ceeat P52.0 with Eq.~50! wheret1 is adjusted to set the
scale of Eq.~47!. The agreement is quite good even if some
deviation is seen for 0.01<t/ t̄<1 where the Rouse model
does not fit accurately the stretched-exponential regime with
stretching parameterb50.82. The deviations are also seen
in the plot of«9 which is shown in Fig. 15~b!. Finally, Fig.
15 confirms once more that the scaling procedure is more
robust than the Rouse model. The disagreement may be par-
tially ascribed to the well-known stretched-exponential de-
cay of the correlation functions of the modes which is seen
for bead-rod and bead-spring models of oligomeric
systems.45,51,97 This differs from the simple exponentials
with decay times given by Eq.~47! which are predicted by
the Rouse model. Another source of inadequacy is the fact
the Rouse model poorly accounts for the fast motions local-
ized on a few bonds and this limitation is important for the
present model where the bond length is fixed. In fact, devia-
tions from the Rouse model were reported by experiments
carried out on different polymeric systems both at very high
scattering vectors~short length scales! and high chain
stiffness.98–100

Recently, Harnauet al.101–103developed the semiflexible
chain model~SFCM!, a modification of the Rouse model in
order to represent the local chain stiffness effects. According
to the SFCM, the mode relaxation times are given by

tp
SFCM5

t1

p21abf ~p!p4 , ~51!

which differs from Eq.~47! for the p4 term. f (p) is a nu-
merical factor increasing fromf (1)50.25 to the unit value
for largep. Theab parameter reads104

FIG. 14. ~a! Representative plots of the complex permittivities as computed
from the correlation functionsCtot(t) ~solid lines! and Ctot* (t) ~dotted lines!
for the temperaturesT50.7, 1.2, and 1.8 andP52.0; ~b! Cole–Cole plot of
the complex permittivities of panel~a! for T51.2.
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ab5F pCM

2~M21!G
2

, ~52!

whereCM is the characteristic ratio defined by Eq.~2!. The
ab parameter is virtually temeperature-independent in that
ab50.056 atT50.7, P52.0, and it changes toab50.064 at
T51.8,P52.0. We fitted the SFCM model to our master
curves by adjustingt1 andab . The results are shown in Fig.
15~a! for Cee(t) and in Fig. 15~b! for «9. SFCM improves
the fit with the best-fit valueab50.05960.004 over all the
interval 1022<t/ t̄<102.

The shape of the peak of the permittivity«~v! due to the
segmental relaxation is now considered. It is derived from
Eq. ~37! by replacingCtot with the correlation function of the
perpendicular polarizationP'(t) which is proportional to
C'(t) according to the relation

^P'~0!•P'~ t !&5~m'T'!2C'~ t !. ~53!

Figure 16~a! presents the master curve ofC'(t) at P52.0.
After the ballistic regime with Gaussian decay and a plateau-
like region the decay is described by a stretched-exponential
with b50.84. The stretching is very close to that found for
Cee(t) in the same time window@see Fig. 15~a!#. Figure

16~b! plots the corresponding«9 which is fitted fairly well by
the Fourier transformed stretched exponential withbKWW

50.84 or with a Cole–Davidson function withbCD

50.767, following the relationship found by Lindsey and
Patterson for the shape parameters of the two functions.105

The comparison with the Rouse model is not pursued further
since the latter is not expected to describe with accuracy the
fast decay ofC'(t). The comparison with the SFCM model
is more promising and is under current development.87

IV. CONCLUSIONS

Results of extensive MD simulations of a polymer melt
have been presented. The thermal and the density effects on
the statics and the dynamics have been investigated in wide
temperature and pressure ranges.

In the explored thermodynamic region, a global time-
temperature-pressure superposition principle~TTPSP! for
both the translation and the rotational dynamics holds and a
single scaling timet̄ is found.t̄ is very close to the correla-
tion time of the end–to–end vectorteeand the diffusion time
tdiff . The scaling argument is more robust than the Rouse
model and relies on neglecting at long times (t.t* ) the finer

FIG. 15. ~a! The master curve of the correlation functionCee for all the
temperatures on the isobarP52.0 ~ thin lines!. The dotted line is a fit with
Eq. ~50!, the thick solid line is the best-fit of the SFCM model withab

50.05960.004, andt151.1560.04. The exponents of the power-laws give
the stretching parameters ofCee at intermediate and long times and~b! the
master curve of the dielectric permittivity« i9 derived from the correlation
functions of panel~a!.

FIG. 16. ~a! The master curve of the correlation functionC'(t) for all the
temperatures on the isobarP52.0. The exponents of the power-laws give
the stretching parameters ofC' and ~b! the master curve of the dielectric
permittivity «'9 derived from the correlation functions of panel~a! ~thin
lines!, the thick and dotted lines are fits with a Cole–Davidson function
(bCD50.767) and by takingC'(t) to be a stretched exponential with
bKWW50.84, respectively.
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details of the interactions between each monomer and its
surroundings so that the motion is accounted for by average
viscoelastic forces.

The thermodynamic states of the polymer model were
well fitted by the phenomenological Tait equation of state.
The dimensionless constantr T which is derived by the best-
fit parameters is found to be in the range of real polymers.

The isochronicat and isobaricaP expansivities were
investigated. By examining the ratiouatu/aP between the
isochronic and isobaric expansivities, one finds that the tem-
perature is dominant when the dynamics is fast. If the relax-
ation slows down, the fluctuations of the free volume in-
crease their role and become comparable to those of the
thermal energy.

The MD simulations were used to model the dielectric
relaxation of type-A polymers. The so called ‘‘normal-mode’’
relaxation has been related to the end–to–end vector self
correlation function, while the ‘‘segmental’’ relaxation to the
self correlation function of a vector built from units which
are locally orthogonal to the chain backbone. For chains with
M510 monomers the normal and segmental modes overlap
with appreciable cross-correlations which prevent one to
consider them as being independent to each other. On in-
creasing the chain length the two modes are well separated.
For unentangled chains the master curve of the normal mode
is well fitted by the semiflexible chain model,101–103a modi-
fication of the Rouse model developed in order to account
for the local chain stiffness.
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