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Abstract

A united-atom model of polyethylene (PE) has been studied by molecular-dynamics
simulations to investigate the conformations of transient and equilibrated single-
molecule PE crystals. It is shown that, in spite of the wide differences in the number
and the length of the stems forming the ordered structures, the average length of
the loops connecting the stems is nearly constant.
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1 Introduction

The crystalline state of polymers is very different from that of other materials
because of the need to arrange in an ordered way a large number of monomers
linked to each other sequentially. This results in a wide range of possible
hierarchical morphologies where the basic unit is the lamella, which is a few
hundred Ångstrom thick [1–4]. The backbone of a single polymer chain, which
is several thousand Ångstrom long, is folded inside the lamella to form the
so-called stems; these are perpendicular to the basal surfaces of the lamella
where the foldings are localized.
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Different processes in polymer crystallization are known [1,2]. Here, we are
interested in the primary homogeneous nucleation of single-molecule crystals
in dilute solutions. Very few groups have challenged the experimental study of
single-molecule single crystals [5–7]. This motivated several simulation works
[8–18]. In particular, for a united-atom model of polyethylene ( PE ) it was
found that the equilibrium chain conformation of single-molecule crystals is
folded [8,9,18]. Differently, the general consensus is that for multi-chain crys-
tallites the global minimum of the free-energy corresponds to the extended
conformation of the single chain [19]. The equilibrium or kinetically-selected
conformation of the single chain is reached by the reorganization of the folded
structure involving changes in the number of stems µ [3,9,18]. This yields
transient states which are in general of difficult characterization [20]. This be-
haviour may be seen as a microscopic manifestation of the Ostwald step rule
stating that in the course of transformation of an unstable ( or metastable
) state into a stable one the system does not go directly to the most sta-
ble conformation but prefers to reach intermediate stages having the closest
free-energy to the initial state [21].

A key feature of the lamella is the folding region where the loops connecting
two different stems are located. Both the experimental [3] and the numerical
[17,18] works pointed out the sharpness of the loops connecting the different
stems. This paper presents novel evidence about the loop structure gained
from molecular-dynamics (MD ) simulations on a united-atom model of PE.
Surprisingly, it is found that the average number of segments per loop λ is
constant for a wide variety of transient and equilibrated crystal structures. The
paper is organized as follows. In Sec.2 the numerical methods are presented.
The results are presented and discussed in Sec.3. Conclusions are summarized
in Sec.4.

2 Numerical methods

The simulations deal with the behaviour of a single PE chain with N = 500
monomers in solution. The solvent is mimicked by suitable friction and random
forces acting on the monomers. The chain is described as a sequence of beads,
where each bead represents a single methylene CH2 group. No distinction
is made between internal methylene CH2 groups and terminal methyl CH3

groups in order to obtain a slight improvement in efficiency [10]. For long
chains this approximation is fair. The local interactions shaping the chain are
defined by the potentials
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Ubond(r) = kr(r − r0)
2 (1)

Uangle(θ) = kθ(cos θ − cos θ0)
2 (2)

Utorsion(φ) = k1(1 − cos φ) + k2(1 − cos 2φ)

+ k3(1 − cos 3φ) (3)

Ubond(r) is a harmonic spring potential defined for every couple of adjacent
beads, r being their distance and r0 the equilibrium bond lenght. Uangle(θ)
is defined for every triplet of adjacent beads, θ being the angle between the
corresponding bonds and θ0 its equilibrium value. Finally, Utorsion(φ) is defined
for every quadruplet of adjacent beads and φ is the dihedral angle beween the
planes defined by the corresponding three adjacent bonds. Pairs of beads not
interacting by any of the preceding potentials interact by means of a Lennard-
Jones potential

ULJ(r) = 4ǫ

[

(

σ

r

)12

−
(

σ

r

)6
]

(4)

with a cutoff radius rcut = 2.5σ. The set of parameters of the above force field
are taken from ref. [22] ( see table 1 ). The force field enforces the local stiffness
of the chain yielding a Kuhn segment length ℓk

∼= 1.2 [1,2,18], corresponding
to segments with about four beads. Therefore, the polymer is sketched as a
succession of about Nk = 125 rigid segments. The corresponding time and
temperature units are given by t∗ = 2.21 ps and T ∗ = 56.3 K. All the results
will be presented in terms of reduced units. For the set of parameters listed
in Table 1 the single-molecule crystal melts at Tm = 11 ± 0.2 in the limit of
vanishing heating rate [22,9].

The dynamics is described by the Langevin equation

r̈i = −∇i U − Γṙi −Wi (5)

where ri denotes the position vector of the i-th bead, ∇i U is the sum the
internal forces acting on it, Γṙi is the frictional force and Wi is a gaussian
noise:

〈Wi(t) · Wj(t
′)〉 = 6ΓkbTδijδ(t − t′) (6)

The friction and the random forces account for the solvent and set the tem-
perature via the proper fluctuation-dissipation theorem. Eq.5 is integrated by
means of the velocity Verlet algorithm with time step ∆t = 0.001 [23,24].

The runs are performed according to the following protocol: seventeen random
chain conformations are initially equilibrated at Teq = 15 for at least ten times
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Table 1
Parameters of the force field.

Parameter
Value

reduced units SI units

ǫ 1 0.112 kcal/mol

σ 1 4.04 Å

m 1 14.03 g/mol

Γ 1 0.455 Hz/mol

kr 51005 350 kcal/mol Å2

r0 0.38 1.53 Å

kθ 535.71 60 kcal/mol

θ0 109◦ 109◦

k1 26.96 3.02 kcal/mol

k2 -5 -0.56 kcal/mol

k3 23.04 2.58 kcal/mol

the time needed for the self correlation function of the end-to-end vector to
vanish. The equilibrated chain does not exhibit any local orientational order.
The final temperature Tf = 9 is reached via istantaneous direct quenches
Teq → Tf . The data are collected immediately after the quench. Memory effects
were also investigated by preparing a sample in the “all-trans” fully-extended
conformation and isothermally annealing it at T = 9.

3 Results and discussion

For all the thermal histories, the nucleation starts either globally ( Fig.1: top )
or in distinct sites ( Fig.1: bottom ), as previously noted [9]. Anyway, at later
times a single ordered structure is systematically observed which undergoes
structural changes leading to transient crystalline structures with different
number of stems µ. We characterize here the latter regime only and neglect the
very early stage. The final crystalline state, i.e. the one reached at long times,
is found to be independent of the thermal history and, more specifically, to
correspond to the free-energy global minimum [18] in agreement with previous
results on shorter chains at the same Tf = 9 [8,9]. The number of stems of
the final crystalline state is µ = 10. A tomography of that state is presented
in fig.2. The tomography of the transient crystalline states does not reveal
marked differences apart from the number of stems µ and the number of
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Fig. 1. Wire-frame snapshots of the crystallization of a single polyethylene chain with
N = 500 monomers for two different initial states: chain equilibrated at Teq = 15
and quenched at Tf = 9 (top); chain initially in the fully-stretched configuration
(all-trans) and isothermally annealed at T = 9 (bottom). For the latter case note
the presence of initial distinct nucleation sites merging at later times.

Kuhn segments m belonging to each stem.

A preliminary characterization of the crystallized chains is provided by the
inertia tensor of the transient and the final crystalline configurations. The
principal axes {1, 2, 3} are ordered according to the magnitude of the corre-
sponding eigenvalue. As an example, for the final crystalline state with µ = 10
the average values are 〈I1〉 = 10097 ± 58, 〈I2〉 = 9885 ± 51, 〈I3〉 = 1148 ± 11.
Since 〈I1〉 & 〈I2〉 ≫ 〈I3〉, the ellipsoid of inertia of the crystal exhibits approx-
imate cylindrical symmetry around the 3 axis, as it may be seen by visual
inspection (Fig. 2).

In order to analyze the crystal structure one defines the monomer distribution
function ρ(r) as

ρ(r) =
1

N

N
∑

i=1

〈

δ(r − r
(cm)
i )

〉

(7)

where r
(cm)
i is the position of the i-th bead with respect to the center of mass

of the chain and the brackets denote a suitable average. In particular, one
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Fig. 2. Tomography of the crystal state with a number of stems µ = 10. The azure
zone is the stem region ( the region comprised between the two maxima in the curve
for µ = 10 in Fig.3) . The red zones are the two caps. The left-side column plots
the averaged density profiles in the cross sections marked by the dashed lines. Note
the absence of ordered structures on the crystal surface and the two caps.

defines the quantity

N||(x
3) = N d ×

∫

ρ(x1, x2, x3) dx1dx2 (8)

where d = 0.31 is the distance along the chain backbone between two adjacent
beads of the fully-extended chain and xk is the projection of r along the k−th
principal axis. The quantity N||(z) denotes the average number of intersections
of the chain with the plane at x3 = z, namely a plane perpendicular to the
approximate cylindrical symmetry 3 axis.

Figure 3 plots the quantity N||(z) for all the observed transient and final
crystalline structures averaged over all the thermal histories. For each crystal
structure labelled by the number of stems µ, three different regions of N||(z)
are seen: the central stem region where N||(z) ≃ N||(0) = µ; the transition
region around the two peaks of N||(z), where the average orientation of the
stems departs from the 3 axis, and the end region where the stems join each
other by forming loops. The flatness of N||(z) in the central region follows
from its highly ordered structure ( see Fig. 2). Figure 3 makes it also apparent
the small size of the two crystal caps. In fact, for the final crystalline state
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Fig. 3. The number of intersections of the chain with the plane at x3 = z, N||(z), for
the different transient and final crystalline states at T = 9. The number of stems
µ = N||(0) is in the range 7 < µ < 13. The crystal with µ = 10 stems corresponds to
the final equilibrated state. Inset: The crystalline fraction φcry (eq.9) vs. the number
of stems µ. The superimposed line is eq.10 with λ = 4.0 ± 0.1.

( µ = 10 ) the longitudinal size of the loops, ∆z ∼ 3, is fairly smaller than
the crystal length 2Lc ∼ 16, where Lc is defined via the equation N||(Lc) = 1.
Notice that, since I3 ≪ I⊥ with I⊥ = (I1 +I2)/2 ≃ 9990, the folded chain may
be sketched as a rigid rod with lenght 2L, mass N and negligible thickness.

The approximation yields L =
√

3I⊥/N ≃ 7.74, to be compared with Lc ∼ 8.
Fig. 3 also suggests that the number of monomers in the end sections does
not depend in a marked way on the number of stems µ. To assess the issue, we
consider the crystalline fraction φcry of a crystal with µ stems. φcry is estimated
by the ratio

φcry =

∫ z2
max

z1
max

N||(z)dz
∫ ∞
−∞ N||(z)dz

(9)

where z1
max and z2

max are the points where N||(z) reaches the maximum values.
Let us assume that an average number of segments λ is located in each of the
µ − 1 loops connecting the stems. Then, the crystalline fraction is given by

φcry = 1 − (µ − 1)
λ

Nk

. (10)

The inset of Fig. 3 shows the best-fit of φcry from eq.9 with eq.10 having
adjusted λ. It proves that the number of segments forming the loops do not
change appreciably from one transient structure to the other. At the highest
number of stems ( shortest crystal longitudinal size ) eq.10 overestimates φcry

suggesting that the disorder of the end sections affects the ordered part more
effectively ( or, alternatively, that λ increases).
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Table 2
Test of Eq.11 with λ = 4

µ m m∗

7 14.0 14.43

8 12.2 12.12

9 10.25 10.33

10 8.75 8.9

11 7.5 7.73

12 6.25 6.75

13 5.0 5.92

As further test of the negligible changes of λ with µ we note that the number
of Kuhn segments per stem m is expressed as m = (z2

max − z1
max)/ℓk. On the

other hand, if λ is nearly constant

m∗ =
Nk − λ (µ − 1)

µ
(11)

Table 2 compares m with m∗ as taken from Eq.11 with λ = 4.

The above results have two main implications on the study of the free-energy
landscape ( FEL ) of single-chain crystals. First, different models of FEL have
been proposed basically assuming either long loops [9] or short loops [18].
The finding that each loop has four Kuhn segments on average supports the
latter assumption which also follows from both experimental [3] and numerical
studies [17]. Second, the macroscopic states of the PE single-chain crystals
have been usually labelled by the (µ, m) pair, thus resulting in 3D FEL plots
[9,18]. The fact that the loop size is only weakly dependent on the crystal size
provides a link between the number of stems µ and the number of segments
per stem m which is expressed by Eq.11. That equation paves the way to a
one-dimensional representation of the FEL. The procedure is under study as
well as the extension of the present results to longer chains and multi-chain
crystalline structures [25].

4 Conclusions

A united-atom model of polyethylene has been studied by molecular-dynamics
simulations to investigate the conformations of transient and equilibrated
single-molecule PE crystals. Numerical evidence is given that, in spite of the
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wide differences in the number and the length of the stems forming the or-
dered structures, the average length of the loops connecting the stems is nearly
constant.
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