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1. Introduction

The Rouse model [1] is the simplest bead-spring model for flexible polymer chains

[2, 3, 4]. Being expressed in terms of either continuous [3] or discrete [5, 6, 7, 8]

mode distributions, it is usually applied to describe the long-time or large-scale polymer

dynamics by neglecting the interactions between monomers which are distant along

the chain, i.e. excluded volume, hydrodynamic interactions and chain entanglements

are not considered. This model has been frequently applied to non-entangled chains in

concentrated solutions. The model also serves in the description of the entangled chains:

the tube model analyzes the motion of the Rouse chain confined in a tube-like regime

for calculating various kinds of dynamic properties [3]. Thus, the Rouse model is one of

the most important models in the field of polymer dynamics.

In the Rouse model each chain is composed of MR − 1 segments being modelled

by MR non-interacting beads, connected by entropic springs with force constant κ =

3kBT/a2
R, where aR is the average size of the segment, i.e. the root mean square length

of the spring, kB is the Boltzmann constant, and T is the absolute temperature. No

other interaction between the beads is present. In particular, this means that the chains

are ”phantoms”, i.e. they can be crossed by themselves and other chains. The model

considers a given chain and regards the surrounding ones as a uniform frictional medium.

The surrounding chains are depicted to exert on each bead of the selected chain also a

fast-fluctuating random force to ensure proper equilibrium properties via the fluctuation-

dissipation theorem. The Rouse model has been tested by experiments [9, 10, 11, 12]

and numerical simulations [13, 14, 15, 16, 17, 18, 19].

The phantom Rouse chains have static properties which differ from the numerical

results on more realistic polymer models with excluded volume [17]. It is the purpose

of the present paper to discuss how excluded-volume effects may be incorporated into

the Rouse theory in terms of analytic corrections. Our approach deals with short,

unentangled chains where the usual field-theory renormalization procedure [3, 20] is

expected to fail and where, to the best of our knowledge, no effective results are available.

Evidence in favour of our treatment is provided by comparing the resulting expressions

with molecular-dynamics simulations (MD) performed on a fully-flexible polymer model

in the range of polymer lengths 3 ≤ M ≤ 30.

The paper is organized as follows. In Sec. 2 the excluded-volume corrections are

derived. In Sec. 3 the numerical methods are presented. In Sec. 4 the theoretical results

are compared with the simulations.

2. Excluded-volume corrections

The discrete [5, 8] Rouse model [1] describes a single linear chain as a series of MR − 1

segments being modelled by MR non-interacting beads, connected by entropic springs in

the presence of a highly damping gaussian environment. The solution, i.e. the position of

the n-th bead rn, is conveniently expressed in terms of normal coordinates, the so-called
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Rouse modes XR
p with p = 0, . . . , MR − 1, to be written as:

XR
p (t) =

1

MR

MR∑
n=1

rn(t) cos

[
(n − 1/2)pπ

MR

]
(1)

Henceforth, the mode with index p = 0, i.e. the chain center-of-mass, will be not

considered. The static cross-correlations between the Rouse modes vanish. In particular,

for p, q > 0

〈XR
p · XR

q 〉 = δpq
a2

R

8MR sin2(pπ/2MR)
(2)

The Rouse chain provides a coarse-grained picture of flexible linear polymers with

bond length b0 and M monomers, the m−th one being located at the position Rm,

1 ≤ m ≤ M . The segment and the bond lengths are related via the characteristic

ratio C∞ by aR =
√

C∞b0 [3]. The rationale is that the presence of excluded volume

results in a homogeneous dilation of the chain at the largest length scales [20]. For fully

flexible chains,
√

C∞ ∼ 1 [17, 21] and the identification MR = M is safe. In that

case the actual route to calculate the modes in numerical simulations starts by defining

(1 ≤ p ≤ M − 1):

Xp(t) = b0

M−1∑
n=1

dp n bn(t) (3)

where bm is the unit vector along the m-th bond of the chain:

bm =
1

b0

(Rm+1 − Rm) (4)

and

dp n = − 1

2M
sin

[pnπ

M

]
csc

[ pπ

2M

]
(5)

The static cross correlations between the modes read:

〈Xp · Xq〉 = δpq
b2
0

8M sin2(pπ/2M)
+ b2

0

M−2∑
i=1

Dp q i (6)

with

Dp q i =

M−1−i∑
k=1

(dp idq i+k + dq idp i+k)〈bi · bi+k〉 (7)

The first term on the rhs of Eq. 6 coincides with Eq. 2 having replaced the mean square

length of the Rouse segment a2
R with the square length of the bond b2

0 and the number

of Rouse segments with the number of bonds. The second term of Eq. 6 provides the

corrections due to the non-vanishing static correlations between different bonds. If the

chain is a phantom 〈bm · bm+k〉 = δk 0 and the corrections vanish, i.e. Dp q i = 0.
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2.1. Bond-bond static correlations

Eqs. 6 and 7 show that the static properties of the Rouse modes with p > 0 depend

on the bond-bond static correlation 〈bm · bm+k〉, i.e. the average cosine of the angle

between the m-th and (m + k)-th bonds. Explicit expressions of the latter quantity are

known since long time for the case of linear chains with fixed bond (or valence) angle

γm = γ, between the m-th and (m + 1)-th bonds (see Fig. 1, right) both in the absence

[22] and the presence [23] of a torsional potential U(φm), φm being the dihedral angle,

hindering the rotation of the chain around the m-th bond. That results were reviewed

by Flory [24] and, more recently, by others [3, 25].

Here, we are interested in a variant of the above well-known results which, to the

best of our knowledge, was not discussed earlier, i.e. the possibility that the valence angle

γm is not fixed and spans a finite range being limited by the excluded volume effects

between the m−th and the (m + 2)−th beads. Analogously to the classical treatments

of the case with fixed valence angle [3, 24, 25], the statistics of both the valence and the

dihedral angles are taken as independent of each other and also independent of the bond

position m along the chain. For the present purposes torsional potentials are neglected,

i.e. the dihedral angle φ covers the range 0 ≤ φ ≤ 2π with equal probability.

First the scalar product bm · bm+k is considered. To this aim, a local coordinate

system is introduced for each of the bonds. For the m−th bond one takes the xm axis

along the m-th bond, whereas the ym axis lies in the plane formed by the bonds m and

m− 1 so that the angle between the axes xm−1 and ym is acute. The axis zm is directed

so as to make the cartesian coordinate system right-handed. To proceed, the vector

bm+k is transformed by successive transitions from its own coordinate system to the

coordinate system of the m-th bond (from the (m + k)-th to the (m + k − 1)-th bond,

then from the (m + k − 1)-th to the (m + k − 2)-th bond, and so on). In this system,

the vector bm+k reads [26]

b′
m+k = Tm Tm+1 . . . Tm+k−1 bm+k (8)

where the Tm matrix transforms the (m + 1)-th coordinate system to m-th one

Tm =


 cos γm sin γm 0

sin γm cos φm − cos γm cos φm sin φm

sin γm sin φm − cos γm sin φm − cos φm


 (9)

Then

bm · bm+k = {Tm Tm+1 . . . Tm+k−1}11 (10)

where {X}ij denotes the ij element of the X matrix. The average 〈bm · bm+k〉 is

expressed as

〈bm · bm+k〉 = {〈Tm Tm+1 . . . Tm+k−1〉}11 (11)

= {〈T〉k}11 (12)
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with

〈T〉 =


 〈cos γ〉 〈sin γ〉 0

0 0 0

0 0 0


 (13)

which yields:

〈bm · bm+k〉 = 〈cos γ〉|k| (14)

We are now in a position to include the excluded-volume effects into the model. We

present two different models: i) hard monomers (HM), ii) soft monomers (SM).

2.1.1. Hard monomers For a fully-flexible linear chain of monomers pictured as hard-

spheres with diameter σ, linked to each others by bonds with length b0 (see Fig. 1, left),

the valence angle γ spans the range 0 ≤ γ ≤ γmax where γmax = π − 2 arcsin(σ/2b0).

One finds:

〈cos γ〉(HM) =
1

1 − cos γmax

∫ 1

cos γmax

xdx (15)

= cos2
(γmax

2

)
(16)

=

(
σ

2b0

)2

(17)

From Eq. 14 one has

〈bm · bm+k〉(HM) =

(
σ

2b0

)2|k|
(18)

Usually, b0 ∼ σ, i.e. γmax ∼ 120◦, and then 〈bm · bm+k〉 is negligible for k > 2.

2.1.2. Soft monomers Now let us consider a fully-flexible linear chain with bond length

b0 and non-bonded monomers interacting via the Lennard-Jones (LJ) potential U(r)

U(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
(19)

As first step the canonical average 〈cos γ〉 was evaluated as:

〈cos γ〉(SM0) =

∫ 2b0
0

(
r2

2b20
− 1

)
re−βU(r)dr∫ 2b0

0
re−βU(r)dr

(20)

Later, it will be shown that the above expression leads to some, but not remarkable,

agreement with the numerical simulations in that it overestimates the role of the

attractive tail of the LJ potential. In fact, the Weeks-Chandler-Andersen reference-

potential theory (WCA) proves that the static properties of dense monatomic liquids

may be effectively calculated by treating the attractive part of the potential as a

perturbation on a hard-sphere system [27]. In practice, WCA divides the potential

U(r) into a reference potential U0(r) and considers the difference U(r)−U0(r) as a small

perturbation. In particular, WCA shows that the static properties of the reference fluid,
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i.e. the one with interactions governed by U0(r), may be mapped into the properties of

a fluid of hard-spheres with effective diameter σWCA. In the present case the reference

potential takes the form of the truncated Lennard-Jones potential:

UT (r) = (U(r) + 1)H(
6
√

2σ − r) (21)

where H(x) is the Heaviside step function. UT (r) vanishes in the minimum of U(r) and

ensures that the force is continuous.

The WCA theory deals with monatomic liquids and, therefore, does not provide

routes to evaluate the average 〈cos γ〉. No hints are also given by PRISM theory, a

recent extension of WCA to polymers, where the focus is on the interchain correlations

and the intrachain static structure, of interest here, is needed as input information [28].

As a first guess we modified Eq. 17 as

〈cos γ〉(SM1) =

(
σWCA

2b0

)2

(22)

where σWCA was evaluated according to standard iterative procedures [27, 29]. However,

the above equation differs little from Eq. 17 since we found σWCA/σ ∼ 1.01 in agreement

with others [29]. Eq. 17 disagrees with numerical simulations of polymer chains with

soft monomers (see later). As an alternative, we evaluated the average 〈cos γ〉 as a

canonical average by using UT (r) in the Boltzmann weight.

〈cos γ〉(SM2) =

∫ 2b0
0

(
r2

2b20
− 1

)
re−βUT (r)dr∫ 2b0

0
re−βUT (r)dr

(23)

However, also the above approximation led to values differing little from Eq. 17.

Contrary to Eq. 20, both Eq. 22 and Eq. 23 underestimate the attractive tail of the LJ

potential. Having noted that the full inclusion of the attractive tail of the LJ potential

in the SM0 model leads to some agreement with the numerical simulations we finally

tried the following ansatz

〈cos γ〉(SM3) =

∫ 2b0
0

(
r2

2b20
− 1

)
e−βUT (r)dr∫ 2b0

0
e−βUT (r)dr

(24)

The ansatz increases the weight of configurations with close monomers (small r values).

Notice that 〈cos γ〉(SM3) is about 25% smaller than 〈cos γ〉(SM2). Below, it will be shown

that the above ansatz is quite effective. Henceforth, for comparison purposes we define

via Eq. 14 the following form :

〈bm · bm+k〉(SMi) =
[〈cos γ〉(SMi)

]|k|
, i = 0, . . . , 3 (25)

2.2. Magnitude of the excluded-volume corrections

To assess how large are the excluded-volume corrections with respect to the Rouse

original results for phantom chains, it is useful to consider the ratio

ρp q =

∑M−2
i=1 Dp q i√

1
8M sin2(pπ/2M)

√
1

8M sin2(qπ/2M)

(26)
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Eq. 25 for the SM3 model allows one to evaluate explicitly the above quantity. Fig. 2

(left) shows a semi-qualitative plot of ρp q for M = 30. It is found that the excluded-

volume effects do largely affect the moduli of the modes whereas their orthogonality

breaks down weakly. Irrespective of the excluded-volume corrections, it is also seen that

the matrix element 〈Xp · Xq〉 still vanishes if the pair (p, q) is made by odd-even pairs

of numbers. Fig. 2 (right) shows selected cross sections of ρp q.

3. Numerical methods

We investigate systems of N fully flexible linear chains with M monomers by molecular-

dynamics methods (MD). The (M, N) pairs under investigation are (3, 667), (5, 200),

(10, 200), (15, 220) (22, 300) and (30, 300). The interaction between non-bonded

monomers occurs via the Lennard-Jones (LJ) potential, Eq. 19. Actually, the potential

is cut off at rcut = 2.5σ and properly shifted so as to vanish at that point and to

make it continuous everywhere. The RATTLE [30] algorithm is used to constrain

neighboring monomers in the same chain at distance b0 = 0.97σ. From now on LJ

units are adopted with the Boltzmann constant kB = 1. The samples are equilibrated

under Nosé-Andersen [30] dynamics at a given temperature and pressure. Data are

collected during production runs in microcanonical conditions. Further details are given

elsewhere [21]. The system is studied at the constant pressure P = 2.0 and temperature

T = 1.2 corresponding to number densities in the range 0.91 ≤ ρ ≤ 0.95. The results

have been averaged over ten independent runs at least. Note that the present range of

chain lengths is below the entanglement length of the present model Ne ∼ 32 [19].

4. Results and discussion

The modes Xp are found to be fairly orthogonal. In fact, the quantity 〈Xp · Xq〉 with

p �= q is two-three orders of magnitude less than the moduli of the involved modes (data

not shown). Moreover, the temperature dependence of the moduli of the Rouse modes

was found negligible in the range 0.65 ≤ T ≤ 1.8 for M = 10 (data not shown). Both

findings are in agreement with other studies [15, 17].

Fig. 3 plots the relative errors between the MD simulations and the predictions

of the SMi models via Eq. 6 in terms of the reduced index p/M . No parameter was

adjusted. The left panel shows that for M = 30 the SM3 model agrees better than the

other SMi and HM models. The right panel shows that, apart from the trimer case (M =

3), the deviations of the SM3 model for the other chain lengths are fairly superimposed

to each other within the statistical errors. This is a consequence of the good scaling with

respect to the reduced index p/M of the moduli from both the MD data (see below)

and the SMi model (one notes by inspection that 〈|Xp|2〉(SMi) ∼= M−1φ′(p/M)).

Further insight into the SM3 model is provided by Fig. 4 which plots the moduli

of the modes for all the chain lengths under study and compares the numerical results

with Eq. 6. It is seen that the model ensures good agreement with MD data over
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a range of the moduli spanning more than two orders of magnitude. The left panel

of Fig. 4 analyzes the case with M = 10 in detail. It is seen that the Rouse model

with the identification aR = b0 does not work. Assuming homogeneous dilation, i.e.

setting aR =
√

C∞b0 [3, 20], improves the comparison but for the modes with low-p

index only. These findings are known [17] and are anticipated in that the homogeneous-

dilation picture follows by a renormalization procedure keeping the structural details

at the largest length scales only [20]. The latter are just accounted for by the Rouse

modes with low-p index [3]. Fig. 4 (left) also shows that the HM model (similarly to

the SM1 and SM2 models) corrects too much the Rouse model, i.e. it overestimates

the excluded-volume effects, whereas good agreement is provided by the SM3 model for

all the modes, i.e. for all the relevant length scales. Fig. 4 (right) validates the SM3

model also for all the polymer lengths under study with no adjustable parameters. Fig.

4 (right) shows that 〈|Xp|2〉 ∼= M−1φ(p/M), i.e. it scales with respect to the reduced

index p/M . That scaling is predicted by the Rouse model (see Eq. 2) but it cannot be

anticipated on a more general ground. In general, Xp accounts for the local structure

and motion of chains with M/p bonds [3]. The observed scaling proves that, irrespective

of the chain length M , portions of the overall chain with the same number of bonds

exhibit very similar structures in the range 3 ≤ M ≤ 30. That finding suggests that

cross-correlations between bonds which are far apart along the chain are weak. In fact,

neglecting completely the cross-correlations, i.e. setting 〈bm · bm+k〉 = δk 0, leads to

phantom gaussian chains which exhibit the same scaling.

One may wonder whether the elementary models discussed here apply to longer,

entangled chains as well. A thorough analysis goes beyond the purposes of the present

paper. However, a preliminary result is obtained by considering the available MD data

on the first Rouse modes of a dense melt of chains each consisting of M freely-jointed

tangent (b0 = σ) hard spheres [31]. The authors consider that for a continuous model

the Rouse mode Xp is defined as [3]:

Xp =
1

M

∫ M

0

dn cos
(pπn

M

)
Rn (27)

They approximate the above integral by using a trapezoidal integration and write

Xp =
1

M

{
M∑

n=1

[
Rn cos

(
pπ(n − 1)

M − 1

)]
− 1

2
[R1 + (−1)p Rn]

}
(28)

Eq. 28 corrects a misprint with respect to the original Eq. 16 of ref. [31]. For the sake

of correctness it must be noted that the latter has another problem (also present in Eq.

28) since the trapezoidal integration does not express the leftmost factor as M−1 but

as (M − 1)−1. Nonetheless, for the purpose of comparing our HM model with the MD

results of ref. [31] Eq. 28 is enough and it will be used in the equivalent form

Xp =
b0

M

M−1∑
n=1

{[
M∑

k=n+1

cos

(
pπ(k − 1)

M − 1

)]
− 1

2
(−1)p

}
bn (29)
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The above equation allows one to express the modulus 〈|Xp|2〉 in terms of the bond-

bond static correlations 〈bm · bm+k〉 by considering, in particular, the expression given

by the HM model Eq. 18. Fig. 5 shows that the predictions of the HM model are in

good agreement with the MD results for M = 192 from ref. [31]. Note that M = 192 is

well above the entanglement length which is roughly Ne ∼ 32 [19].

5. Conclusion

We have shown that excluded volume effects on single-chain statics may be introduced

by analytic corrections to the Rouse results. The final expressions do not depend on free

parameters. They exhibit excellent agreement with the molecular-dynamics simulations

of unentangled polymer melts with chain length in the range 3 ≤ M ≤ 30. Preliminary

results for entangled polymer melts are encouraging.
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Figure captions

Figure 1. Left: the polymer model under study: a fully-flexible linear chain with
M monomers pictured as soft or hard spheres and fixed bond length b0. The portion
between the m-th monomer and the (m+2)-th one is emphasized. Right: the definition
of the bond (or valence) angle γm between the m-th bond and the (m + 1)-th one.

Figure 2. Left: Density plot of |ρp q| being evaluated by the SM3 model with M = 30,
b0 = 0.97, kBT/ε = 1.2. Lighter squares correspond to higher values, black squares
mean ρp q = 0. Right: Selected sections of ρp q.

Figure 3. Relative error e = 102 × (〈|Xp|2〉(SMi)/〈|Xp|2〉 − 1) between MD data and
the SM0, SM2, SM3 models for M = 30 (left) and the SM3 model for all the molecular
weights under investigation (right). No free parameters. The deviations of HM, SM1
and SM2 models are quite similar and for clarity reasons only the latter is shown.

Figure 4. The moduli of the modes Xp (Eq. 3) for different chain lengths M and
1 ≤ p ≤ M − 1. Left: comparison between different models and the MD simulation
with M = 10. The dotted and the dot-dashed lines are the predictions of the Rouse
model (Eq. 2) by taking the segment length aR equal to the bond length and assuming
homogeneous dilation of the bond length [3, 20], respectively. Both the HM and
SM3 models have no adjustable parameters. Right: Comparison of the SM3 model
(continuous lines) with all the MD data. No parameter was adjusted. The lowest curve
is the plot of 〈|Xp|2〉 for all the chain lengths, having shifted the curves vertically by
the quantity log(C/M), C being a constant. The dotted line is a guide for the eyes.

Figure 5. Comparison between the HM model and the modulus of the first Rouse
modes of chains each consisting of M freely-jointed tangent hard spheres (M = 192)
[31]. The relative error e = 102 × (〈|Xp|2〉(HM)/〈|Xp|2〉 − 1) is also drawn. No
parameter was adjusted.
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