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Algorithms for the numerical integration of Langevin equations are compared in detail from the
point of view of their accuracy, numerical efficiency, and stability to assess them as potential
candidates for molecular-dynamics simulations of polymeric systems. Some algorithms are
symplectic in the deterministic frictionless limit and prove to stabilize long time-step integrators.
They are tested against other popular algorithms. The optimal algorithm depends on the main goal:
accuracy or efficiency. The former depends on the observable of interest. A recently developed
quasisymplectic algorithm with great accuracy in the position evaluation exhibits better overall
accuracy and stability than the other ones. On the other hand, the well-known
BrünGer-Brooks-Karplus �Chem. Phys. Lett. 105, 495 �1982�� algorithm is found to be faster with
limited accuracy loss but less stable. It is also found that using higher-order algorithms does not
necessarily improve the accuracy. Moreover, they usually require more force evaluations per single
step, thus leading to poorer performances. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2464095�

I. INTRODUCTION

The physics of macromolecules is a major research field
with extremely important applications to both the material
science and the biology. In recent years, computer simula-
tions have developed into a powerful tool for studying the
dynamic, structural, and topological features of macromo-
lecular systems. A major challenge in these studies is the
wide range of length and time scales characterizing the mo-
lecular structure and the dynamics, respectively. From this
respect, one is interested in algorithms which may make use
of long time steps in the integration of the equations of mo-
tion, in order to investigate the slow dynamics, with limited
or no loss of accuracy to sample the short time dynamics in
an accurate way. That issue will be discussed in the present
paper by referring us to the case of polymers, where a large
number of monomers are linked together by covalent bonds
to form linear chains or more complex architectures.1–4

Heretofore, molecular-dynamics �MD� simulations of
dense polymer systems have been limited to relatively long
chains �usually not exceeding 1000 monomers for coarse-
grained models and even less for atomistic models� and time
spans rarely exceeding a few hundred of nanoseconds.5 The
Monte Carlo �MC� method offers an interesting alternative to
MD. Through the design of clever moves, configurational

sampling can be dramatically enhanced. MC moves such as
concerted rotation,6 configurational bias,7,8 and internal con-
figurational bias9 have thus successfully addressed the prob-
lem of equilibrating polymer systems with moderate chain
lengths, however, even these moves were proven incapable
of providing equilibration when applied to polymer melts of
molecular length exceeding about 100 monomers. A solution
to this problem was given by the development and efficient
implementation of a chain connectivity altering MC move,
i.e., end bridging �EB�.10–12 Using EB, atomistic systems
consisting of a large number of long chains, up to 1000
monomers, have been simulated in full atomistic detail.11,12

Similar efforts, employing chain connectivity altering seg-
mental rearrangements, include the cooperative motion
algorithm13 used in lattice-based simulations of complex
polymer systems and an off-lattice MC study of the inter-
phase between crystals with freely rotating chains.14 Despite
its remarkable efficiency in equilibrating long chain polymer
melts, EB suffers from three shortcomings. �a� It cannot
equilibrate monodisperse polymer melts; a finite degree of
polydispersity is necessary for the move to function. While
this is not a drawback in modeling industrial polymers,
which are typically polydisperse, the ability to equilibrate
strictly the monodisperse polymers is highly desirable for
comparing simulations with the theory and the experiments
on anionically synthesized model systems. �b� It relies on the
presence of chain ends. Thus, it does not offer itself for densea�Electronic mail: dino.leporini@df.unipi.it
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phases of chains with nonlinear architectures containing long
strands between branch points such as H-shaped polymers,
for cyclic molecules, or for model polymer systems with
infinite chain length. �c� Its performance drops considerably
as the stiffness of chains increases or in the presence of chain
orientation. In order to overcome these problems, new con-
nectivity altering moves, involving two bridging trimers
among four properly chosen monomers along one or two
chains in the system, were developed.15,16

Polymer physics is inherently multiscale in nature, i.e.,
microscopic interactions are strongly coupled to meso- and
macroscopic properties.1–4 As noted above, despite the in-
creasing computational power and ongoing efforts to en-
hance the efficiency of MD integration algorithms,17–21 all-
atom MD simulations are often incapable to cover the time
scales of dense polymer systems, especially for long chains.5

However, in some cases the need of the huge amount of
detailed information being provided by that approaches may
be questioned �e.g., the chemical details affect the prefactors
of the universal power laws only�. This motivates the strat-
egy to perform a systematic coarse graining of the polymer
chain to retain the relevant degrees of freedom only. Re-
cently, great efforts have been devoted to the development of
multiscale approaches, where different parts of the system
are modeled with different accuracies.22–27 Similar proce-
dures are well known in polymer physics since long time,
e.g., in the Rouse model dealing with short chains where,
given a particular chain, the effect of the surroundings is
accounted for by a stochastic background and the chain dy-
namics is described by suitable Langevin equations.2,3 The
Rouse model describes the long time behavior very well and
belongs to the class of models where the stochastic behavior
pictures the coupling with a thermal bath �alternatively, one
may modify the equations of motion by coupling the system
to an additional degree of freedom30–33�. In the Langevin
dynamics formalism, the degrees of freedom of the bath are
eliminated by using the Mori-Zwanzig projection
technique.34,35 The result is a set of stochastic differential
equations describing the dynamic state of the target system.36

Langevin dynamics has been also used to accelerate the ex-
ploration of the high-dimensional configuration space of
macromolecules.37

Within an approach based on stochastic differential
equations, symplectic algorithms are noteworthy. Symplectic
integrators are numerical integration schemes for Hamil-
tonian systems, which conserve the symplectic two-form
dp∧dq exactly, so that �q�0� , p�0��→ �q��� , p���� is a ca-
nonical transformation. For both explicit and implicit inte-
grators, it was shown that the discrete mapping obtained de-
scribes the exact time evolution of a slightly perturbed
Hamiltonian system and thus possesses the perturbed Hamil-
tonian as a conserved quantity. That feature is of interest in
common integration schemes which conserve not the com-
plete Hamiltonian but some other quantity which slightly
differs from it.38–42 Symplectic algorithms guarantee that, in
spite of the local truncation error, the total energy �which
should be conserved exactly in the original flow� exhibits
limited errors growing in time, the so-called secular errors. If
the integrator is not symplectic, secular errors of the total

energy are usually observed. Dedicated symplectic algo-
rithms were derived for studying the monodimensional mo-
tion of a single Brownian particle.38,43 In that case the equa-
tion of motion is

v̇ = F�x� − �v + ��t� , �1�

where the mass of the particle is unitary, x is the position,
v= ẋ the velocity, F�x� the force, � is the damping factor, and
��t� is a random Gaussian noise, with zero average and delta
correlations,

���t���s�� = 2�T��t − s� , �2�

where T is the temperature of the system. It will be proven
that the above dedicated algorithms are also well suited for
multiparticle systems in the usual three-dimensional space.
To this aim, the dynamics of a single polymer chain in dilute
solution will be considered.3,4,44 Trajectories were generated
by the above symplectic algorithms and compared with some
popular alternatives.

The paper is organized as follows. In the Sec. II the
symplectic algorithms of interest are presented together with
the alternative ones. In Sec. III the polymer model and the
details of the simulations are given. The results are discussed
in Sec. IV. Section V summarizes the conclusions.

II. ALGORITHMS

First, let us discuss symplectic integrators and consider
the following problem.40,45 Let A and B be noncommutative
operators and � be a small real number. For a given n integer
�later, to be identified with the order of the integrator�, find a
set of real numbers �c1 ,c2 , . . . ,ck� and �d1 ,d2 , . . . ,dk� such as

exp���A + B�� = �
i=1

k

exp�ci�A�exp�di�B� + o��n+1� . �3�

As an example, for n=2 and k=2, one finds

exp���A + B�� = exp� 1
2�A�exp��B�exp� 1

2�A� + o��3� . �4�

The above general problem is directly related to the symplec-
tic integrator of a Hamiltonian H�p ,q�=T�p�+V�q�.40

Let us consider the Liouville operator L for a system
with f degrees of freedom,

iL = �… . ,H	 = 

j=1

f �ẋj
�

�xj
+ Fj

�

�pj
� , �5�

where xj and pj are the positions and conjugate momenta of
the system, respectively, Fj is the force on the jth degree of
freedom, and �…, …	 is the Poisson bracket of the system. L
is a linear Hermitian operator on the space of square inte-
grable functions of �, with �= �xj , pj	. The state of the sys-
tem at time t is given by

��t� = U�t���0� , �6�

where the classical propagator is defined as

U�t� = exp�iLt� . �7�

In a symplectic algorithm one key step is the separation of
the Liouvillian in two terms L1 and L2 such as L=L1+L2. For
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second-order integrators �n=2� the Trotter theorem46 ensures
that47

exp�i�L1 + L2�t�

= �exp�iL1�h/2��exp�iL2�h��exp�iL1�h/2��	P, �8�

where h= t / P. From this one defines the discrete time propa-
gator as

G�h� = U1
h

2
�U2�h�U1
h

2
�

= exp�iL1�h/2��exp�iL2�h��exp�iL1�h/2�� . �9�

Notice that the propagator G�h� is time reversible. As an
example, the Liouvillian, Eq. �5�, may be separated as48

iL1 = 

j=1

f

Fj
�

�pj
, iL2 = 


j=1

f

ẋ j
�

�xj
. �10�

The above choice leads to the velocity Verlet �VV� algo-
rithm, which in one dimension takes the form49

x�t + h� = x�t� + hv�t� + 1
2h2v̇�t� ,

�11�
v�t + h� = v�t� + 1

2h�v̇�t� + v̇�t + h�� ,

where h is the integration time step and v̇ is given by the
deterministic equation of motion. If iL1 and iL2 are ex-
changed, the position Verlet �PV� algorithm is obtained.47

Both algorithms are correct to second order.
The deterministic VV algorithm, Eq. �11�, may be aug-

mented to the corresponding stochastic VV �SVV� algorithm
as �using the prescription in Ref. 52�

x�t + h� = x�t� + hv�t� + 1
2h2a�t� ,

�12�
v�t + h� = v�t� + 1

2h�a�t� + a�t + h�� ,

where a�t+h� is the acceleration defined as

v
t +
h

2
� = v�t� +

1

2
ha�t� ,

�13�

a�t + h� = F�x�t + h�� − �v
t +
h

2
� + � ,

where � is a random Gaussian variable with �2T�h standard
deviation and zero average.

To summarize, the basic ingredients of a deterministic
symplectic algorithm are the optimum choice of the separa-
tion L=L1+L2 and the subsequent explicit form of Eq. �3� to
get the numerical integration scheme with the aid of Eqs. �6�
and �7�.

For a given deterministic symplectic scheme with n or-
der, a corresponding quasisymplectic stochastic algorithm
may be found.39 As an example, let us consider the determin-
istic leap-frog algorithm,38,39

x̄ = x�t� +
h

2
v�t� ,

v�t + h� = v�t� + hF�x̄� , �14�

x�t + h� = x̄ +
h

2
v�t + h� .

The corresponding stochastic algorithm, the so-called sym-
plectic low order �SLO� algorithm, is described by the
equations38

x̃ = x�t� +
h

2
v�t� ,

v�t + h� = c2�c1v�t� + hF�x̃� + d1�� , �15�

x�t + h� = x̃ +
h

2
v�t + h� ,

where � is a random Gaussian variable with unit standard
deviation and zero average and

c1 = 1 −
�h

2
, c2 =

1

1 + �h/2
, d1 = �2T�h .

The SLO algorithm is able to reproduce the probability dis-
tribution of position up to an order O�h� �not to be confused
with the order of the integrator�. It can be further improved
by deriving an algorithm with order O�h2�. The details are
given elsewhere.38 The integration scheme, the so-called
symplectic high order �SHO� algorithm, is as follows:

x1 = x�t� +
h

4
v�t� ,

v1 = c2�c1v�t� +
h

2
F�x1� + ��Th�a1�1 + a2�2�� ,

x2 = x1 +
h

2
v1, �16�

v�t + h� = c2�c1v1 +
h

2
F�x2� + ��Th�b1�1 + b2�2�� ,

x�t + h� = x2 +
h

4
v�t + h� ,

with

c1 = 1 −
�h

4
,

c2 =
1

1 + �h/4
,

a1 = − 1.069 186 004 330 706 5 . . . ,

a2 = − 0.153 323 040 701 989 3 . . . ,

b1 = 0.304 491 312 885 406 5 . . . ,

b2 = − 1.036 316 412 609 579 0 . . . .

Here �1 and �2 are two uncorrelated random Gaussian vari-
ables with unit standard deviation and zero average. Note
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that although this algorithm uses two random variables, the
weight they have in the scheme has been crafted to yield the
same amount of coupling with the bath.

One is also interested in testing a fourth-order algorithm,
which is a derivation of a fourth-order Hamiltonian Runge-
Kutta �HRK4� scheme,39,50

vi = ci
�2��ci

�1�vi−1 + bi�F�xi−1� + d1��� ,

�17�
xi = xi−1 + haivi,

where 1� i�4 and

x0 = x�t�, v0 = v�t� ,

x4 = x�t + h�, v4 = v�t + h� ,

a1 = 0.515 352 837 431 123,

b1 = 0.134 496 199 277 431,

a2 = − 0.085 782 019 412 974,

b2 = − 0.224 819 803 079 421,

a3 = 0.441 583 023 616 467,

b3 = 0.756 320 000 515 668,

a4 = 0.128 846 158 365 384,

b4 = 0.334 003 603 286 321,

ci
�1� = 1 −

�h

2
bi,

ci
�2� =

1

1 +
�h

2
bi

.

In addition to the SVV algorithm, other two additional
benchmarks will be also considered. First, the popular
Brünger-Brooks-Karplus �BBK� algorithm,51

ṽ = v�t� +
h

2
F�x�t�� ,

x�t + h� = x�t� +
�1 − exp�− �h��

�
ṽ + �2T/��2,

�18�

v�t + h� = exp�− �h�ṽ +
h

2
F�x�t + h�� + �2T��1.

The stochastic variables �1 and �2 are defined as

�1 = ��2�1,

�2 =
�1 − �2

��2

�1 +�h −
�1

2

�2
�2,

where �1 and �2 are two uncorrelated Gaussian variables with
zero average and unit standard deviation and

�1 =
1

�
�1 − e−�h� ,

�2 =
1

2�
�1 − e−2�h� .

Finally, one will also consider the well-known algorithm �to
be referred to as Li, from “liquids”�,52

x�t + h� = x�t� + c1hv�t� + c2h2F�x�t�� + �1,

�19�
v�t + h� = c0v�t� + �c1 − c2�hF�x�t�� + c2F�x�t + h�� + �2,

where

c0 = e−�h, c1 =
1 − c0

�h
, c2 =

1 − c1

�h
.

The above algorithm was analyzed in depth elsewhere.38

III. MODEL AND DETAILS OF SIMULATION

The system to be used to test the different algorithms
listed in Sec. II is a model of a single polyethylene chain
with M =20 monomers in solution. It was studied in detail by
the present53–55 and other authors.56–58 The chain is described
as a sequence of beads, where each bead pictures a single
methylene CH2 group. No distinction is made between inter-
nal methylene CH2 groups and terminal methyl CH3 groups
in order to obtain a slight improvement in efficiency.

The local interactions shaping the chain are defined by
the potentials,

Ubond�r� = kr�r − r0�2, �20�

Uangle��� = k��cos � − cos �0�2, �21�

Utorsion�	� = k1�1 − cos 	� + k2�1 − cos 2	�

+ k3�1 − cos 3	� . �22�

Ubond�r� is a harmonic spring potential defined for every
couple of adjacent beads, r being their distance, and r0 the
equilibrium bond length. Uangle��� is defined for every triplet
of adjacent beads, � being the angle between the correspond-
ing bonds and �0 its equilibrium value. Utorsion�	� is defined
for every quadruplet of adjacent beads and 	 is the dihedral
angle between the planes defined by the corresponding three
adjacent bonds. Finally, couples of beads which are not in-
teracting by any of the preceding potentials will interact via
a Lennard-Jones potential

ULJ�r� = 4
�
�

r
�12

− 
�

r
�6� + Ucut. �23�

The parameter Ucut shifts the potential to zero at the cutoff
distance rcut=21/6� �that is, the Lennard-Jones miminum�.
ULJ=0 for r�rcut. The values of the various parameters are
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listed in Table I. The force field ensures that the bond length
and the bond angle are virtually constant. Reduced units will
be used: � is the unit length, 
 is the unit energy, and the
united-atom mass m is the unit mass. The corresponding time
and temperature units are given by t*=2.21 ps and T*

=56.3 K. The motion is described by the Langevin
equation,28,29

r̈i = − �iU − �ṙi − �i, �24�

where ri denotes the position vector of the ith bead, �iU is
the sum the internal forces acting on it, −�ṙi is the frictional
force, and �i is a Gaussian noise with zero average and delta
like correlation;

��i�t� · � j�t��� = 6�kBT�ij��t − t�� . �25�

It is understood that the different Cartesian components are
mutually independent for i= j. All the simulations have been
performed according to the following protocol. The system
was initially equilibrated at the temperature T=9 in MD
units. Then, a single configuration was singled out and used
as seed for all the production runs with the different algo-
rithms.

About the choice of the model, described by Eqs.
�20�–�25�, a point warrant emphasis. This model permits us
to check the performance of the algorithm on a system com-
posed of different potentials mutually interacting. With re-
spect to a harmonic solvable model, it presents the advantage
that anharmonic features can also be addressed. Another as-
pect, more technical, is related to the equipartition of the
energy, which is reached very slowly in the harmonic ap-
proximation. In this situation a well equilibrated configura-
tion can alleviate that drawback.36

IV. RESULTS AND DISCUSSION

Below, we discuss our results splitting them into two
parts pointing out the global and detailed aspects of the al-
gorithms.

A. Global aspects

1. Stability and numerical efficiency

To compare the different algorithms, the integration time
step h was changed to identify the largest value hmax above
which each algorithm is unstable. The algorithm is defined as
unstable if it crashes before 104 iterations. Usually this hap-
pens when the algorithm is unable to integrate in a correct
way the faster degrees of motion �i.e., the bond potential in
the present case�; in that case a fast increase in global energy
�driven by the increase in the bond energy� is observed
which leads the simulations to crash. From this respect, dif-
ferent behaviors were observed. SVV, SLO, BBK, and Li
become unstable for hmax�3.4
10−3, whereas SHO �hmax

SHO

�6.6
10−3� and HRK4 �hmax
HRK4�4.4
10−3� are stable for

longer time steps. The main instability source stems from the
fast oscillations triggered by the potential setting the bond
length, Eq. �20�. However, different from the other algo-
rithms where only one force evaluation per integration step is
needed, SHO and HRK4 require two and four force evalua-
tions per integration step, respectively; i.e., they are compu-
tationally slower. It must be also noted that different algo-
rithms involve the evaluation of different numbers of random
variables. Even if the force evaluation is one crucial part of
each integration step, the evaluation of random variables by
using reliable routines50,59 may affect the performance of the
integration routines for small systems.38 As outlined in Sec.
II, the number of stochastic variables is different for each
algorithm: SHO, BBK, and Li require two random variables,
whereas SVV, SLO, and HRK4 involve only one random
variable. As it will be evident in Sec. IV B, no systematic
differences are evidenced at short h values. Increasing the h
value leads to instabilities, which are related with the inte-
gration scheme of the different algorithms.

2. Stabilization of the deterministic part

In the low friction regime, of interest here, the effective
integration carried out by both the stochastic and the deter-
ministic parts of the algorithm is crucial. Augmenting sym-
plectic algorithms by adding stochastic and dissipative terms
seem to be a viable way to achieve this purpose.38,39 Here,
we want to clarify the improvement in the stabilization of the
algorithms due to their stochastic part.

It is possible to classify the algorithms in two groups: Li,
and BBK, stochastic VV, come from the VV splitting Eq.
�10�, whereas SLO and SHO are a stochastic derivation of
the PV splitting which exchanges the definitions of the Liou-
villians L1 and L2 with respect to the VV one; HRK4, in-
stead, is a symplectic derivation of the standard Hamiltonian
Runge-Kutta schemes.60,61 It is known that the deterministic
VV splitting is better at small time steps, but, on increasing
the time step, it becomes unstable more quickly than the
deterministic PV splitting.47 For this reason it is usually
thought that PV factorization is better than VV one for de-
veloping algorithms in order to reach longer time steps.62,63

Another approach to stabilize integration schemes with
long time steps was pointed out by several authors, who
suggested the use of a Langevin coupling as a device to
dump numerical resonances associated with symplectic

TABLE I. Model parameters.

Parameter

Value

Reduced units SI units


 1 0.112 kcal/mol
� 1 4.04 Å
m 1 14.03 g/mol
� 1 0.455 s−1

kr 51 005 350 kcal/mol Å2

r0 0.38 1.53 Å
k� 535.71 60 kcal/mol
�0 109° 109°
k1 7.1429 0.8 kcal/mol
k2 −3.8393 −0.43 kcal/mol
k3 14.4643 1.62 kcal/mol
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algorithms.62–67 In order to illustrate the Langevin stabiliza-
tion, let us compare the SVV and SLO algorithms both em-
ploying one single stochastic variable. The comparison is
made, as usual, by evaluating the different kinetic and poten-
tial energy terms; see Figs. 1 and 2 to be discussed in greater
detail in Sec. IV B 1. It is seen that the SVV algorithm is less
stable as far as the potential energy is concerned, but the
kinetic energy is more stable. On the other hand, SLO, de-
rived by a PV splitting, performs as SVV to evaluate the
potential energy, but it is worse as far as the kinetic energy is
concerned. The total energy, as evaluated by SVV, is more
stable. These findings suggest that the conclusions drawn for
the deterministic algorithms �see above� cannot be extended
to the stochastic counterparts in a straightforward way.

B. Detailed aspects

1. Energy conservation

The energy conservation is an important goal in MD
simulations and the symplectic algorithms are designed to
achieve this target. Figure 2 plots the average values of the
overall energy �H�, the overall potential energy �U�, and its

different contributions, �Ubond� �Eq. �20��, �Uangle� �Eq. �21��,
and �Utorsion� �Eq. �22��, as well as the Lennard-Jones aver-
age energy �ULJ� �Eq. �23��. The total energy fluctuations and
the energy drift ��H� /�t were also plotted. Monitoring the
different components of the total energy is useful in order to
search the sources of instabilities since each potential term
has a characteristic time scale. From this respect, Fig. 2
shows that the energy contributions involving faster degrees
of freedom, i.e., the bond potential, are more critical. Figure
2 shows that BBK is the most accurate in its stability region
�h�3.4
10−3�. SHO and Li have comparable perfor-
mances. As we noted above, SHO is the most stable algo-
rithm together with HRK4. However, the latter, a fourth-
order algorithm, does not perform better than the lower-order
algorithms, such as BBK or SHO. It is also seen that, even if
SLO and Li get the probability distribution of the position
with the same accuracy, the latter performs better. The lim-
ited accuracy of SVV is expected since it was developed for
accurate evaluation of the velocity, see Sec. IV B 3. Table II
summarizes the above remarks.

2. Structural properties

All the algorithms under study, apart from SVV, were
designed to give accurate evaluations of the position distri-

FIG. 1. �Color online� The average temperature �T� and the first and fourth
moments of the probability distribution of the modulus of the velocity �v�
and �v4�, respectively. The superimposed dashed lines are the expected the-
oretical values. The absence of error bars from the present figure and the
next ones implies that they are smaller than the symbol size.

FIG. 2. �Color� Dependence of the different energy terms on the integration
step h. The quantities which are plotted are the average values per monomer
of the overall energy �H�, the overall potential energy �U�, and its different
contributions, �Ubond� �Eq. �20��, �Uangle� �Eq. �21��, and �Utorsion� �Eq. �22��,
as well the Lennard-Jones average energy �ULJ� �Eq. �23��. The total energy
fluctuations and the energy drift ��H� /�t were also plotted.
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butions. To test the related performances, we computed the
first two moments of the distribution of the bond length �Fig.
3� and the first four moments of the distributions of both the
bond angle �Fig. 4� and the torsional angle �Fig. 5�. Higher
moments of the bond length distribution were found to be
negligibly small. The evaluation of these structural properties
evidences the better accuracy of SHO with respect to the
other ones. HRK4 performs better than BBK. It must be
noted that SVV and SLO, which have comparable low accu-
racy to evaluate both the potential energies �see Fig. 2� and
the even moments of the distribution of the torsional angle
�see Fig. 5�, are rather different when both the bond length
�Fig. 3� and the bond angle �Fig. 4� are considered. In fact,
SLO underperforms the evaluation of the average values of
both quantities but it has better accuracy for their higher
moments, whereas SVV behaves in the opposite way. Table
II summarizes the above remarks.

3. Temperature and moments of the velocity
distribution

Finally, we compared the performances of the different
algorithms when they have to evaluate the molecular veloc-

ity or related quantities such as the temperature. The results
are presented in Fig. 1. The distribution of the modulus of
the velocity is found to be Maxwellian in shape with first and
fourth moments given by,68

�v� = 2�2T/� ,

�v4� = 15T2.

As expected, SVV algorithm is quite accurate to evaluate
both the temperature and the moments of the velocity distri-
bution. SHO, Li, and HRK4 exhibit similar accuracy. From
this respect, they are better than BBK.

Table II summarizes the above remarks.

V. CONCLUSIONS

Different algorithms were compared to test the accuracy,
the numerical efficiency, and the stability of the MD simula-
tions of a polymer solution with long integration time steps.
HRK4 and the quasisymplectic SHO algorithm are the most
stable. This feature is ensured by their greater accuracy to
evaluate the position and, consequently, to follow the fast
dynamics. However, the numerical efficiency is affected, es-
pecially for HRK4, by the increased number of evaluations
of the forces per integration step. Differently, the popular

FIG. 3. �Color� The first two moments of the bond length distribution.

FIG. 4. �Color� The first four moments of the bond angle distribution.

FIG. 5. �Color� The first four moments of the torsional angle distribution.

TABLE II. Summary of the performances of the algorithms under study.
Apart from the last three rows, the entries denote the ranks of the algo-
rithms. The superscript denotes the sign of the positive/negative deviation
from the best value. �X is the time needed by the X algorithm to complete
one integration step. hmax is the integration time step above which the algo-
rithm is unstable.

Quantity

Algorithm

SHO BBK HRK4 Li SVV SLO

�H� 2+ 1+ 2− 2+ 3+ 4+

�U� 1+ 2+ 2− 3+ 4+ 4+

�ULJ� 1+ 1+ 2− 2+ 3+ 3+

Bond distance 1+ 2+ 1− 3+ 4+ 4+

Bond angle 1+ 2+ 1− 3+ 4+ 4+

Torsional angle 1+ 1+ 2− 2+ 3+ 3+

Velocity 2+ 3− 2− 2− 1+ 4+

�X /�SVV 2 1 4 1 1 1
hmax
103 6.6 3.4 4.4 3.4 3.4 3.4
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BBK algorithm is found to be faster with limited accuracy
loss but with poorer stability. The dependence of the accu-
racy on the quantity to be evaluated was noted. As shown by
Table II, the SHO algorithm exhibits better overall accuracy
and stability than the other ones. As far as the computing
efficiency is concerned, it also compares well with the faster
�but less stable� BBK algorithm.
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