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Abstract

Excluded volume effects on single-chain statics are introduced by analytic correc-

tions to the Rouse results. The final expressions do not depend on free parameters.

They are compared with numerical simulations of a polymer melt for different values

of the temperature, the density and the interaction potential. Density and interac-

tions control the Energy Landscape of the system whereas the temperature selects

the accessible regions. The agreement between the theory and the Rouse modes

does not depend markedly on the temperature with some improvement

for the first modes ( large length scales ). Differently, increasing the packing

and the stiffness of the monomer-monomer interaction reduces the deviations for the

first modes but it leaves the magnitude of the deviations for the high-indexes modes

( short length scales ) nearly unaffected or with some tendency to increase.

The scaling properties of the corrections are briefly discussed.
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1 Introduction

The amorphous polymers have been often described by simplified single-chain

effective-medium theories [1–3]. The success of the latter is mostly due to the

universality of structural and dynamic properties on length scales greater than

the statistical segment length, and time scales much larger than the typical

local time scale of torsional transitions. The Rouse model [4] belongs to the

above class of theories and is the simplest bead-spring model for flexible poly-

mer chains [1–3]. It is expressed in terms of either continuous [2] or discrete [5–

8] mode distributions and neglects the interactions between monomers which

are distant along the chain, i.e. excluded volume, hydrodynamic and other

solvent-mediated interactions, and chain entanglements are not considered. In

addition to the usual application to non-entangled chains in concentrated so-

lutions, the model also serves in the description of the entangled chains: the

tube model analyzes the motion of the Rouse chain confined in a tube-like

regime for calculating various kinds of dynamic properties [2].

In the Rouse model each chain is composed of MR − 1 segments being mod-

elled by MR non-interacting beads, connected by entropic springs with force

constant κ = 3kBT/a2
R, where aR is the average size of the segment, i.e. the

root mean square length of the spring, kB is the Boltzmann constant, and
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T is the absolute temperature. No other interaction between the beads is

present. In particular, this means that the chains are ”phantoms”, i.e. they

can be crossed by themselves and other chains. The model considers a given

chain and regards the surrounding ones as a uniform frictional medium. The

surrounding chains are depicted to exert on each bead of the selected chain

also a fast-fluctuating random force to ensure proper equilibrium properties

via the fluctuation-dissipation theorem. The Rouse model has been tested by

experiments [9–12] and numerical simulations [13–19].

The phantom Rouse chains have static properties which differ from the nu-

merical results on more realistic polymer models with excluded volume [17].

From this respect, we recently derived simple analytic corrections leading to

meaningful improvements [20]. Our approach works well with short, unentan-

gled chains where the usual field-theory renormalization procedure [2,21] is

expected to fail. Nonetheless, preliminary results for long chains were made

available [20].

The present paper extends the results of ref.[20], where chain length was

changed under isothermal and isobaric conditions, by investigating how the

single-chain static properties of a melt of unentangled polymers are affected by

the monomer-monomer interaction potential, the temperature and the density.

It seems proper to put the present study in the context of the the multidi-

mensional potential energy surface as a function of particle coordinates, the

so called potential energy landscape (PEL) [22]. For a system with constant

volume the landscape is fixed and its sampling as a function of temperature

provides information on its dynamic behaviour. Differently, changing the den-

sity and the intermolecular potential ( apart from the special case of molecular

interactions being proportional to a common inverse-power of distances ) is
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expected to affect the rugged character of the PEL, in particular the total

number of basins, their spread in energy and the vibrational properties of in-

dividual energy. The changes of such features proved to affect the fragility of

the system [23,24].

The paper is organized as follows. In Sec. 2 the theory is outlined. In Sec.

3 the numerical methods are presented. In Sec. 4 and Sec. 5 the theoretical

results are compared with the simulations and then discussed.

2 Excluded-volume corrections

2.1 Static properties of the Rouse modes

The discrete [5,8] Rouse model [4] describes a single linear chain as a series

of MR − 1 segments being modelled by MR non-interacting beads, connected

by entropic springs in the presence of a highly damping gaussian environ-

ment. The solution, i.e. the position of the n-th bead rn, is conveniently ex-

pressed in terms of normal coordinates, the so-called Rouse modes XR
p with

p = 0, . . . , MR − 1, to be written as:

XR
p (t) =

1

MR

MR∑
n=1

rn(t) cos

[
(n − 1/2)pπ

MR

]
(1)

Henceforth, the mode with index p = 0, i.e. the chain center-of-mass, will be

not considered. The static cross-correlations between the Rouse modes vanish.

In particular, for p, q > 0

〈XR
p · XR

q 〉 = δpq
a2

R

8MR sin2(pπ/2MR)
(2)
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The Rouse chain provides a coarse-grained picture of flexible linear polymers

with bond length b0 and M monomers, the m−th one being located at the

position Rm, 1 ≤ m ≤ M (see Fig. 1 a). The segment and the bond lengths

are related via the characteristic ratio C∞ by aR =
√

C∞b0 [2]. The rationale

is that the presence of excluded volume results in a homogeneous dilation of

the chain at the largest length scales [21]. For fully flexible chains,
√

C∞ ∼ 1

[17,25] and the identification MR = M is safe. In that case the actual route

to calculate the modes in numerical simulations starts by defining (1 ≤ p ≤
M − 1):

Xp(t) = b0

M−1∑
n=1

dp n bn(t) (3)

where bm is the unit vector along the m-th bond of the chain:

bm =
1

b0
(Rm+1 − Rm) (4)

and

dp n = − 1

2M
sin

[
pnπ

M

]
csc

[
pπ

2M

]
(5)

The static cross correlations between the modes read:

〈Xp · Xq〉 = δpq
b2
0

8M sin2(pπ/2M)
+ b2

0

M−2∑
i=1

Dp q i (6)

with

Dp q i =
M−1−i∑

k=1

(dp idq i+k + dq idp i+k)〈bi · bi+k〉 (7)

The first term on the rhs of Eq. 6 coincides with Eq. 2 having replaced the mean

square length of the Rouse segment a2
R with the square length of the bond b2

0
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and the number of Rouse segments with the number of bonds. The second term

of Eq. 6 provides the corrections due to the non-vanishing static correlations

between different bonds. If the chain is a phantom 〈bm · bm+k〉 = δk 0 and the

corrections vanish, i.e. Dp q i = 0.

2.2 Bond-bond static correlations

Eqs. 6 and 7 show that the static properties of the Rouse modes with p > 0

depend on the bond-bond static correlation 〈bm ·bm+k〉, i.e. the average cosine

of the angle between the m-th and (m + k)-th bonds. Explicit expressions of

the latter quantity are known since long time for the case of linear chains with

fixed bond (or valence) angle γm = γ, between the m-th and (m+1)-th bonds

(see Fig. 1 b) both in the absence [26] and the presence [27] of a torsional

potential U(φm), φm being the dihedral angle, hindering the rotation of the

chain around the m-th bond. That results were reviewed by Flory [28] and,

more recently, by others [2,29]. Here, we are interested in a variant of the above

well-known results which was first discussed in ref.[20], i.e. the possibility that

the valence angle γm is not fixed and spans a finite range being limited by

the excluded volume effects between the m−th and the (m + 2)−th beads.

Analogously to the classical treatments of the case with fixed valence angle

[2,28,29], the statistics of both the valence and the dihedral angles are taken

as independent of each other and also independent of the bond position m

along the chain. For the present purposes torsional potentials are neglected,

i.e. the dihedral angle φ covers the range 0 ≤ φ ≤ 2π with equal probability.

Under the above hypothesis one proves that [20]:

〈bm · bm+k〉 = 〈cos γ〉|k| (8)
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With the aim of including the excluded-volume effects one adopts suitable

expressions for the average quantity 〈cos γ〉. A number of different possibilities

were presented in ref.[20]. It was found that the most effective one is the SM3

model yielding :

〈cos γ〉(SM3) =

∫ 2b0
0

(
r2

2b20
− 1

)
e−βUT (r)dr∫ 2b0

0 e−βUT (r)dr
(9)

where β = 1/kBT , kB is the Boltzmann constant and :

UT (r) = [U(r) + ε]H(rmin − r) (10)

where H(x) is the Heaviside step function. UT (r) vanishes in the minimum at

r = rmin of the interaction potential between non-bonded monomers U(r) (

U(rmin) = ε ). That shift ensures that the potential is continuous.

Two features of the SM3 model must be pointed out: 1) the model assumes

that the static properties are dominated by the repulsive part of the potential.

This is in the same spirit of the Weeks-Chandler-Andersen reference-potential

theory (WCA) for monoatomic liquids [30] and its PRISM extension to poly-

mers [31]; 2) the model depends on an ansatz ( the insertion of an effective

r−1 weight in the integrals of Eq.9 ) which overweights the configurations with

close monomers (small r values).

2.3 Scaling properties

Given a Rouse chain with MR beads, a decimated chain with M ′
R = MR/α

( α > 1 ) is a Rouse chain itself [2]. One may wonder if that feature is also

present in our extension for fully flexible chains. For the latter the bond-bond
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correlations 〈bm · bm+k〉 , Eq.8, vanish virtually for k > 2 and reasonable

values of the average 〈cos γ〉 [20]. It may be proven that for the decimated

chain

〈b′
m′ · b′

m′+k〉 = f(α, 〈cos γ〉) 〈cos γ〉(|k|−1)α, k ≥ 1 (11)

where f is a decreasing function of α. If α > 2 the static properties of the

Rouse modes of the decimated chain with excluded-volume corrections reduce

to the ones of the usual Rouse model, i.e. 〈b′
m′ ·b′

m′+k〉 is negligible for k ≥ 1.

3 Numerical methods

We investigate systems of N = 200 fully flexible linear chains with M = 10

monomers by molecular-dynamics methods (MD) [32]. The interaction be-

tween non-bonded monomers occurs via the parametric potential [33,24]:

V (r; l, s) =
ε

s − l

[
l
(

rmin

r

)s

− s
(

rmin

r

)l
]
. (12)

For different (l, s) pairs the steepness of the repulsive and the attractive wings

is changed while leaving unchanged both the position rmin = 6
√

2 σ and the

depth of the global minimum ε ( Fig.2 ). For l = 6, s = 12 the usual Lennard-

Jones potential is recovered. Actually, the potential is cut off at rcut = 2.5σ

and properly shifted so as to vanish at that point and to make it contin-

uous everywhere. The interaction of bonded monomers is set by summing

the Lennard-Jones potential V (r; 6, 12) to the Finitely Extensible Nonlinear

Elastic potential ( FENE ) with characteristic parameters K = 30εσ−2 and

R0 = 1.5σ [19] leading to the average bond length b0 = 0.97σ. From now on
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we set σ = 1, ε = 1 and kB = 1. The samples are equilibrated at a given

temperature and density. Data are collected during production runs in micro-

canonical conditions. The system is studied at densities ρ = 0.7, 0.8, 0.9, 1.0

and temperatures T = 1.2, 1.8, 3.0. The results have been averaged over five

independent runs at least. Note that decamers ( M = 10 ) are shorter than

the entanglement length of the present model Ne ∼ 32 [19].

4 Results

The Rouse modes Xp are found to be fairly orthogonal. In fact, the quantity

〈Xp ·Xq〉 with p �= q is two-three orders of magnitude less than the moduli of

the involved modes (data not shown) in agreement with other studies [15,17].

Figs. 3,4,5 compare the MD results concerning the moduli of the Rouse modes

Xp with the predictions of the SM3 model via Eqs. 6,7,8,9,10 with no ad-

justable parameter.

Fig. 3 plots the relative errors for different temperatures. Decreasing the

temperature, the deviations for the Rouse mode with p = 1, 2, i.e. the

ones accounting for the chain conformations on the longest length

scales [2], decrease. Differently, for p > 2 the deviations increase.

Fig. 3 (insert) shows that the average of the moduli of the relative

errors over all the Rouse modes is nearly temperature independent.

Fig. 4 shows that, on increasing the density, the deviations for the Rouse

mode with p = 1, decrease. For p = 2 the deviations change their sign

with magnitude nearly unaffected. For p = 3 there is an increase of

the deviations. For p > 3 the deviations are either nearly unaffected
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or a little decreasing in magnitude. Fig. 4 (insert) shows that the

average of the moduli of the relative errors over all the Rouse modes

decreases with increasing density.

Fig. 5 plots the relative errors for different shapes of V (r; l, s) ( see also Fig.2 ).

The overall agreement of the SM3 model with the numerical results is better for

stiff potentials ( l = 11, s = 12 ) in that the magnitude of the deviations

decreases for all but the modes with p = 3, 4, 9 with respect to the

other floppier potentials.

5 Discussion

The above first results need to be complemented by more detailed studies

which go beyond the purpose of the present paper. However, some preliminary

conclusions may be drawn.

The negligible temperature dependence of the statics of the Rouse modes was

noted elsewhere [15,17,20]. At higher temperatures the truncation procedure

of the potential, Eq.10, ( and then the SM3 model itself ) becomes questionable

since the high kinetic energy of the monomer allows the latter to sense a wider

portion of the interaction potential, including the attractive tail.

As noted above, for a system with constant volume and fixed interactions the

potential energy landscape (PEL) is fixed and changing the temperature varies

its sampling [22]. Differently, changing the density and the intermolecular po-

tential ( apart from the special case of molecular interactions being propor-

tional to a common inverse-power of distances ) affects the rugged character

of the PEL and then the fragility of the system [23,24]. From this respect it is
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interesting to note a difference in Figs. 3,4,5 . Changing the temperature

affects in an uniform way the plot since it lifts up the relative error

of the Xp mode ( Fig. 3 ) reducing the deviations of the modes with

the lowest indexes. Instead, increasing the density and the potential

stiffness results in a sort of clockwise rotation of the curves reducing,

again, the deviations of the modes with the lowest indexes ( long

length scales) , but showing a tendency to increase the deviations

for the modes with the highest indexes ( short length scales ), see

Figs. 4,5.

The SM3 model implies via Eq.8 ideal gaussian properties of the chain at

large scales [2]. When the density increases, the accuracy improvement of

the model to account for the chain conformations on long length scales is

taken as a consequence of better screening of the excluded volume and then of

increasing ideality [2]. This is also supported by the preliminary observation

of the decrease of the characteristic ratio C10 with increasing density (data not

shown) [2,3]. On the other hand, when the potential stiffness increases, the

accuracy improvement of the model to account for the chain conformations on

long length scales is ascribed at least in part to better localization of the intra-

chain monomer-monomer interactions, the central assumption of the Rouse

model [2].

6 Conclusions

We have shown that excluded volume effects on single-chain statics may be

introduced by analytic corrections to the Rouse results. The final expressions

do not depend on free parameters. In particular, the SM3 version of the above
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approach has been compared with numerical simulations of a polymer melt for

different values of the temperature, the density and the interaction potential.

Density and interactions control the PEL of the system. Changing the tem-

perature just allows for PEL exploration. The overall agreement between the

SM3 model and the moduli of the Rouse modes does not depend markedly

on the temperature with some improvement for the first modes (

large length scales ). Differently, increasing the packing and the stiffness of

the monomer-monomer interaction reduces the deviations for the first modes ,

whereas it leaves the magnitude of the deviations for the high-indexes modes (

short length scales ) nearly unaffected or with some tendency to increase.
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Figure captions

Fig. 1. Top: the polymer model under study: a fully-flexible linear chain with M

monomers pictured as soft spheres with bond length b0. The portion between the

m-th monomer and the (m + 2)-th one is emphasized. Bottom: the definition of the

bond (or valence) angle γm between the m-th bond and the (m + 1)-th one.

Fig. 2. Plot of the interaction potential between the non-bonded monomers V (r; l, s),

Eq.12, with σ = 1, ε = 1.

Fig. 3. Relative error of the moduli of the Rouse modes

e = 102 × (〈|Xp|2〉(SM3)/〈|Xp|2〉 − 1) between MD data and the SM3 model

for different temperatures. M = 10, ρ = 0.8, potential parameters l = 6, s = 12.

Inset: temperature dependence of the average modulus of the relative

error. No parameter was adjusted.

Fig. 4. Relative error of the moduli of the Rouse modes

e = 102 × (〈|Xp|2〉(SM3)/〈|Xp|2〉 − 1) between MD data and the SM3 model

for different densities. M = 10, T = 1.2, potential parameters l = 6, s = 12. Inset:

density dependence of the average modulus of the relative error. No

parameter was adjusted.

Fig. 5. Relative error of the moduli of the Rouse modes

e = 102 × (〈|Xp|2〉(SM3)/〈|Xp|2〉 − 1) between MD data and the SM3 model

for different shapes of the interaction potential between non-bonded monomers

V (r; l, s), Eq.12 ( see Fig. 2 ) . M = 10, T = 1.2, ρ = 0.8
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