ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

Fluctuations of non-conservative
systems

Dino Leporini'? and Roberto Mauri?

! Department of Physics ‘Enrico Fermi’, Universita di Pisa, I-56127 Pisa, Italy
2 SOFT-INFM-CNR, P.zza A. Moro 2, 1-00185, Roma, Italy

3 Department of Chemical Engineering, Industrial Chemistry and Material
Science, Universita di Pisa, I-56126 Pisa, Italy

E-mail: dino.leporini@df.unipi.it and r.mauri@ing.unipi.it

Received 3 January 2007
Accepted 13 February 2007
Published 1 March 2007

Online at stacks.iop.org/JSTAT /2007/P03002
doi:10.1088/1742-5468 /2007 /03 /P03002

Abstract. When a non-conservative system fluctuates around its steady
configuration, in general, neither equipartition nor the fluctuation—dissipation
theorem are satisfied. Using a path integral approach, we show that in this case
the probability distribution is determined in terms of the energy dissipated along
the minimum path. The latter is the path of minimum energy dissipation of a
fictitious, unit mass particle, moving with constant energy under the influence
of an electric and a magnetic field. In addition, the instantaneous speed of this
particle equals the mean backward velocity of the Brownian particle. At the
end, a Boltzmann-like probability distribution is obtained, which allows us to
define an effective temperature kernel. In particular, when the forces applied to
the particle are linearly dependent on the distance from the origin, the effective
temperature turns out to be the sum between an isotropic and an antisymmetric
tensor, which allows us to generalize the fluctuation—dissipation theorem.
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1. Introduction

In classical thermodynamics, an isolated system tends to assume its equilibrium
configuration which, according to the second law, is unique and corresponds to the state
in which the energy functional is minimized [1]. In fact, any classical thermodynamic
system is assumed to have an infinite number of degrees of freedom and, consequently, its
stable equilibrium state is infinitely more probable than any other state.

On the other hand, finite systems fluctuate, as all configurations around the
equilibrium state have a finite probability to occur. Since, according to the equipartition
theorem (EPT), each degree of freedom gives a constant contribution to the total free
energy of the system, this probability is the Boltzmann distribution, C'exp[—¢(x)/kT],
where ¢(x) is the energy of the state x of the system?®, k is Boltzmann’s constant, T is
the absolute temperature of the thermal bath and C' is a normalization factor. Note that
here and in the following we denote by ‘state’ of a system the ensemble of variables x
which completely define its configuration.

The other fundamental relation describing the fluctuations around an equilibrium
state is the fluctuation—dissipation theorem (FDT), stating that there is a direct relation
between the fluctuation properties of a thermodynamic system and its linear response
properties. The FDT is derived from the assumption of microscopic reversibility, as the
response of a system in thermodynamic equilibrium to a small external perturbation is
assumed to be the same as its response to a spontaneous fluctuation.

Let us consider a system surrounded by a reservoir, with temperature 7' (and pressure
P), and assume that its state can be described through a set of observables x;. Denote
by (x;)o the canonical average of x; over all the configurations of the unperturbed system
at equilibrium with the surroundings; assuming that the system has a state of stable
equilibrium, we can assume, without loss of generality, that (z;)o = 0. Therefore, the
fluctuations of the system can be described through the correlation matrix

aij(t, s) = (wi(t);(s))o- (1)

4 More precisely, ¢(x) is the reversible work that has to be applied to the system to bring it from the equilibrium
state to its current state x.
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If the system is near its state of stable thermodynamic equilibrium, its free energy can be
written as AGy = %gijxixj, with g;; = gj;. Therefore, according to EPT, the correlation
matrix becomes 0;; = knggl.

Now, assume that at time ¢ = 0 a constant perturbation F}, with || F}|| = e, is applied
to the system, driving the expectation value of the variable z; from (x;)o = 0 to (x;)..
Here, F} is the generalized force coupled to z;, i.e. F; = 0Gy/0x;, where Gy is the free
energy of the unperturbed system. Accordingly, the dissipating properties of the system
can be described in terms of the susceptibility,

{0 _ (20

o 2)

Xij = lli% F;

The integrated form of FDT states that [9]
0ij(t,t) = KTxi;(), (3)

where k is the Boltzmann constant. If the system is near its state of stable thermodynamic
equilibrium, we obtain F; = gjrxi, and x;; = gl-;l, showing that FDT is identically satisfied.

Now, when the system is subjected to both conservative and non-conservative forces,
the picture above becomes murky, and it is not clear which concept, if any, will take
the place of the Boltzmann distribution or the temperature. So, for example, consider
the motion of colloidal particles which are in thermal equilibrium with the fluid in which
they are suspended and at the same time interact hydrodynamically with each other.
From numerical simulation, we know that quantities such as the particle pair probability
function and mean square velocity fluctuations do tend to steady state values, therefore
suggesting that some sort of a ‘thermodynamic’ description of such systems should occur.
However, we have no idea about how such steady state quantities could be determined «a
priori, and what they depend on.

In recent theoretical [3,4] and experimental [5, 6] articles, it has been shown that the
fluctuation—dissipation theorem (FDT) is violated in many cases. In particular, when the
system is not too far from a stationary state (not necessarily corresponding to a state of
stable equilibrium), it might admit a non-equilibrium temperature [7]. Such temperature
can be defined through the static or the dynamic form of FDT, although the former
seems to be more robust [8]. In particular, when the applied force moves the system away
from its state of stable thermodynamic equilibrium and confines it to a harmonic well,
Mauri and Leporini [8] showed that FDT can be generalized, defining a time-dependent
temperature tensor Tix(t) as follows:

Xi; (D)o(t) = kTy(t). (4)

At t = 0, the system is at equilibrium, so that T;;(t = 0) = T6;;. At long time, though,
the system may tend to another stationary, non-equilibrium state, characterized by a
non-isotropic temperature tensor. A similar non-equilibrium temperature was defined in
previous works [10, 11].

In this paper, without trying to solve this fundamental problem in its entirety, we
concentrate on a particular case, namely the motion of a single Brownian particle in a
fluid flow, subjected to both conservative and non-conservative forces. Apart from its
simplicity, the great advantage of this problem is that for linear forces it reduces to the
Ornstein—Uhlenbeck problem [2], therefore providing a way to check the validity of our
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results. The novelty of the approach presented here is that we use the path integral
formulation, thus providing an alternate point of view which might help to solve similar
problems in the future.

2. Description of the model

Consider a Brownian particle diffusing with diffusion coefficient D = kT', where the drag
coefficient has been assumed to be normalized. Assuming that the Brownian particle is
subjected to a force F, the probability density satisfies the Fokker—Planck equation,

oP
E—FV-Jzé(x—xo)é(t); J=FP - KkTVP. (5)
Here, the force F coincides with the particle mean forward velocity [12],
D*x(t) . (x(t+ At) — x(t))
_ v+t — _
F=Vi=—7 =im At ' (6)

Now, let us assume that the system has a position of stable equilibrium, say x = 0.
Therefore, as t — 0o, we expect a Boltzmann-like solution of this kind:

P(x) = Cexp(—¢(x)),

T (7)

where C' is a normalization factor which can be determined from
/P(x) dx = 1. (8)

Substituting (7) into (5) we obtain
(V) - (VY +F)=kTV - (Vi +F). (9)

Identical results could be obtained starting from the backward Fokker—Planck
equation [12],
or

S5V (VP +ETVP) = 3(x = x0)4(t), (10)

which is expressed in terms of the particle mean backward velocity,

V- — D=x(t) _ lim (x(t) — x(t — At))
Dt At—0 At
Now, in general, the force F is the sum of a conservative and a non-conservative
force, i.e. F = F© 4+ F®) with V x F(© = 0 and V - F®) = 0. Clearly, when the
Brownian particle is subjected to a conservative force F = —V¢, then the solution of
equation (9) is simply ¢ = ¢, so that the probability distribution (7) reduces to the
Boltzmann distribution and EPT is satisfied. In addition, from its definition (2), we see
that x;; = 9%°¢/0x;0x; = kTazgl, showing that in this case, as expected, FDT is identically
satisfied as well.
Another interesting case arises when at any location the conservative and non-
conservative forces are perpendicular to each other, i.e. F(©.F®) = 0. In fact, substituting
1 = ¢ into equation (9) we obtain F(©.F®) = —kTV.F®) = 0, so that we may conclude

=F —2kTVlogP =F +2V. (11)
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that in this case EPT is identically satisfied. However, unlike the case of conservative force
fields, here FDT, in general, is not satisfied.
An alternative approach uses the Langevin equation,

x—F=f, (12)
where X = V represents the particle mean velocity (otherwise [12] referred to as current
velocity), while f is the Brownian force. Now, since J = Px%, from (5) we see that
f = —kTVlog P, so that

V=F+Vy=4V'+V) (13)

In particular, in the case of conservative force fields, with F = —V ¢ and ¢ = ¢, we

obtain V= -V~ and V = 0.

3. Path integral approach

The path integral formulation of a diffusion process is due to Wiener [13] and has been
since generalized by Feynman and Hibbs [14].

Considering that the Brownian force f in (12) results from the sum of a large number
of collisions of the particle with the surrounding fluid, each occurring randomly and
independently of the others, we have

(f(t)) = 0; (FOF(t+ 7)) = 2ETTo(7). (14)

Applying the central limit theorem this result can be generalized, obtaining that the
probability of observing a certain Brownian force function f(¢) is the following Gaussian
distribution:

PIE(t)] o exp [-% | [e@B@te s nyaar), (15)
where B is a sort of inverse of the variance of the process [15],

B(r) = (F(t)f(t + 7)) = %15(7). (16)

Now, since f(t) and x(¢) are linearly related through the Langevin equation, the
probability P[x(t)] that the particle follows the path x(t) is proportional to P[f(t)].
Consequently, substituting equations (12) and (16) into (15), we obtain [16]

1 . 9
P[x(t)] = G(x,t) exp [—m /x(t) |x — F| dt] . (17)
Here the normalizing term G is equal to the Jacobian,
t
G, t]x0) = exp [— / (V- V) dt], (18)
0

where V is the current velocity (13). The Jacobian is the formal solution of the Fokker—
Planck equation (5), i.e.,

P(x,1) = G(x, t]x0)dx — X(t]x0)], (19)
where X(t]x) is the position of the particle at time ¢, assuming that at time ¢t = 0 it was
located at xg.

Finally, the conditional probability P(x, t|xq) that the particle moves from x at time
t = 0 to x at time ¢ will be equal to the sum of the contributions (17) of all paths
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connecting the two points,
Px.txa) = [ PIx(0)DIx(0)] (20)

where the integral is taken over all paths such that x(0) = x¢ and x(t) = x.
Substituting (17) into (20), we can write

Pl o) = [ ep| -2 Dpe(ry (21)

with
Sx(t)] = /0 Lix(r), 7] dr, (22)

and
Lx(7),7] = |x = F|* + 4kTV - V. (23)

Here S[x(t)] is a sort of energy dissipated along the trajectory x(7) during the time interval
t, while L[x(7), 7] is the rate of energy dissipation at time 7. Note that, assuming that P
is given by the Boltzmann-like distribution (7), from (13) we find V-V =V - (F.+ V).

Among all paths, let us denote by y(7) the one that minimizes S. According to
the Hamilton—Jacobi formalism of classical mechanics [17], the momentum p along the
minimum path can be defined as

p— B_ﬂ = 2y — F). (24)

Now, defining the ‘Hamiltonian’ H (in reality, H has the units of an energy per unit
time) as H = p -y — L, we obtain
H=9>—F*—4kTV -V. (25)
The minimum path is determined explicitly through the Hamilton equation,

. OH
b= T ox
that is

p+ (VF).p=4kTV(V-V). (27)
This equation could be obtained directly by applying the Euler—Lagrange equation to (23)
and can be rewritten as

y=VU+yxB, (28)
where
U:%F2+2kTV-V; B=-VxF. (29)

This equation generalizes the result obtained by Wiegler [18], who studied the motion
of Brownian particles in conservative force fields. So, the minimum path describes the
trajectory of a particle of unit mass and unit electric charge immersed in an electric field
U and a magnetic field B.

doi:10.1088,/1742-5468 /2007 /03 /P03002 6


http://dx.doi.org/10.1088/1742-5468/2007/03/P03002

Fluctuations of non-conservative systems

It is intriguing that the dissipative motion of a Brownian particle is described in
terms of the conservative motion of this ‘particle’, whose ‘energy’ H is constant. In fact,
multiplying equation (28) by y and considering that d/dr =y - V, we can see that H is
constant along the minimum path. Accordingly, since by definition

aSmin
ot ’

we conclude that, at steady state, H = 0. Physically, the same conclusion could be
reached observing that at the point of stable equilibrium, xq = 0, we have F = V¢ = 0.

Now, in general, the domain of integration of the path integral is composed of all
paths whose distance from the minimum path is of order 6 ~ kKT'/F or less, where F is
a typical value of F. Therefore, expressing any path x(7) as the ‘sum’ of the minimum
path y(7) and a ‘fluctuating’ part x’(7),

H=— (30)

x(1) =y(1) +X'(7), (31)
where x'(0) = x/(t) = 0, then S[x(¢)] can be expanded formally around y(7) as [15]
1, 0*S ,
S[X(t)] = Smin + §X . [@] — X 4 - (32)

with Spin = S[y(t)], where we have considered that the first derivative is identically zero.
From equations (22) and (23) we see that, if within distances of O(¢d) from the minimum
path F can be approximated as a linear function, then S is a quadratic functional, and
therefore the expansion (32) terminates after the second derivative, with the last term
being a function of x” only, and not of y [19]. Finally, substituting (32) into (21)—(23) we
obtain

1 t
P(x,t|x¢) = W(t) exp {—%—T/O Linin(7) dT:| , (33)
where W (t) is a function of ¢ only, and is independent of the endpoints, while L, can
be obtained from (23) and (25), considering that H = 0:
Lmin(T) = L[y(T)7 T] = 2y : (y - F) (34)

This result shows that under very general conditions the path integral is determined
exclusively by the minimum path [18]. Clearly, equation (33) is the Boltzmann-like
distribution (7), where

t
¢ = ismin = i\/ Lmin(T) dr. (35)
0

Now, substituting (34) into (33) and considering that ydr = dy, we see that equation (35)
is identically satisfied, provided that

y=F+2Vy=V", (36)

where V™ is the mean backward velocity (11). This equality shows that the velocity of the
unit-mass particle along the minimum path coincides, locally, with the mean backward
velocity of the Brownian particle. In particular, in the case of a conservative force field,
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V™ = -V =V, so that in (34) Ly, = 4(V¢)?, and therefore we obtain
P(x,t|x9) = P(xq, t|x). (37)

This shows that the process is time reversible and therefore FDT is identically satisfied.

Finally, we may write the Hamilton—Jacobi equation substituting into (30) the
expression (25) for H in which (cf equation (24)) p = VSuin = 2(y — F), and Sy = 47,
obtaining

(V) - (VY +F) = kTV -V (38)

where we have considered that the system is at steady state. From this equation,
considering that V.= F + V1, we easily obtain equation (9).

4. Linear case

A closed, analytical solution of these problems can be obtained in the linear case,
describing a particle subjected to a linear attracting force, F; = —I';x;, which tends
to restore the equilibrium state x = 0. Consequently, the generalized susceptibility (2)
is xij = Fl-_jl. Think, for example, of a particle immersed in a linear shear flow and
attached to the origin with a spring, so that I';; is the sum of a velocity gradient tensor

I with FS) = 0, and a spring constant FE?) = K;;. In this case, FZ-(C) = —F(S-)xj and

ij 1J

Fi(nc) = —ng)xk, where FS) and FE?) are the symmetric and antisymmetric parts of the

I' matrix. Naturally, if I';; = FZ(-;), the applied force is conservative, i.e. F = —V¢, with

o= %xifs)xj and, as we saw, both EPT and FDT are satisfied. Also, EPT is identically
satisfied when the conservative force is perpendicular to the non-conservative force, that
is when T’ Z(-;)F Z(Z) = 0. In general, as shown by Uhlenbeck and Ornstein [2], the solution of
equation (9) is a Gaussian distribution, that is equation (7) with [20, 21]:
kKT

w = 7.771'0'1-]-133]', (39)
where o;; is the correlation tensor, o;; = (z;x;). Now, multiplying equation (12) by
and considering that (f;z;) = kT'¢;;, where the bracket denotes averaging, i.e. (A(x))
[ A(z)P(x) dz, we see that at steady state we obtain

(Ligow;)™™ = KT 6y, (40)

I

showing that
Lo = kT = k(T8 + T), (41)

where Ti(ja) is an antisymmetric tensor. The FDT (see equation (3) with x;; = I';;') is

valid only when this antisymmetric temperature tensor is identically zero. Obviously, this
is also the solution of the Fokker-Planck equation®.
Now, consider as an example of application the following 2D form of the I' matrix:

ky —w
p(fome) (12)
wy ko
® As shown in [20], the other condition, kT'o;;' = I';;, is identically satisfied by (40).
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where ki and ko are all positive, i.e. there must be a recovering force pushing the particle
towards the origin.
Then, we find the following solution of equation (40):

O = KT k2(k'1 + k2) + w2(w1 + w2) (klwg - k‘gwl)
1j (kl + kQ)(kle + wlwg) (k1w2 — kQ’U}l) kl(kl + k2) + wl(wl + w2)
(43)
Consequently, since the the susceptibility y;; is defined such that |z;| = x;; F}, in our
case we obtain

1 ky —w
PR [t S — ). 44
Xij 4 (]{31]62 + wlwg) (w2 kl ) ( )

At this point, we can determine the tensorial non-equilibrium temperature (41),

obtaining
1wt 10 wy+wy (0 —1
Bt (ke TEE) (1 0)mrm (0 )
RO 0 1) ham 1 oo)

Therefore, we confirm that 7;; is the sum of a symmetric isotropic tensor TG = T6;;
and an antisymmetric tensor. The FDT is valid only when the antisymmetric temperature

tensor is identically zero, which, in our case, requires that w; = —w,. It is interesting to
note that, taking the trace of equation (40), we obtain
1

where d denotes the dimensionality of the problem.
Let us consider three particular cases.

o w; = —wy = w, i.e. I'; is a symmetric tensor, corresponding to the case of a particle
attached to the origin through a spring and immersed in an elongational flow. Then
we find

k k
0'12:]€T v 2 !

—_ =kl—; =kT——— 47
w? — kyky’ o kyky — w?’ 72 krky — w? (47)
showing that indeed o;; = KTT Z’jl Therefore, since 11, = 0, we may conclude that,
as expected, both FDT and EPT are satisfied.

e w; = wy = w, corresponding to the case of a particle attached to the origin through
a spring and immersed in a rotational flow. Then, if the spring recovering force is
isotropic, i.e. k; = ks = A, we find 015 = 0 and 011 = 099 = 033 = kT /A, showing that
EPT is satisfied. On the other hand, 715 = —Tw/A, showing that FDT is violated.
The fact that the equipartition theorem is satisfied is not surprising, as in this case
@ - 0, i.e. conservative and non-conservative forces are perpendicular to each

ij © ik
other.
e w; = 0 and wy = —w, which corresponds to a particle attached to the origin though

a spring and immersed in a simple shear flow along the z;-direction. Again, for an
isotropic spring, with k; = ks = A, we obtain

ETw 2A% 4 w? kT
art TR mE oy
Therefore, since Tjo = Tw/2A, neither FDT nor EPT are satisfied.

(48)

012 = —
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Equation (5) or (12) can also be solved in time, obtaining again a Gaussian
distribution (7) and (39), where, in particular, o;;(¢) is the solution of the following
equation.

C dai j m
5 T Taow) ™™ = kT0. (49)
In particular, when w; = ws = w and k; = ky = A, we obtain
2At
0;(t) = ai(]S-) + Ao;j exp (—T), (50)
where O'Z-(]S-) represents the steady state mean square displacement, while

Aoy =0l — %Ug) (51)
w

AO’QQ = Ugg) + ZO'E(Q)) (52)
w

Aowy =0y + 5 (o1) — 03)) (53)

is the unsteady part of the solution, with O'Z-(](-)) =0;;(t=0) — O'Z-(]S-).

A shown in a recent article [8], although a time-dependent effective temperature can
be defined by solving this problem, it turns out to be not very robust, so that it is
preferable to describe the distance from equilibrium in terms of the stationary effective
temperature (41).
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